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Abstract

Discharge of efluent gas is an inescapable byproduct of many physical processes. The type
or characteristics of the discharge potentially indicate the nature of the process. Observation
of factory stack gases, for example, may indicate the level of pollutants being emitted into
the atmosphere or the nature of the process being carried out in the factory.

In this work, we have developed an improved model of plume dispersion suitable for
synthetic image generation (SIG) applications. The technique partially utilizes a new EPA
model that discretizes the plume into a series of small puffs (rather than the implicit mono-
lithic form used in prior regulatory and SIG work). The locations and sizes of these puffs
are then perturbed to approximate the location and size of the plume at any given instant
and to incorporate the effects of high-frequency wind fluctuation. We have incorporated
an improved model for plume temperature calculation and a more accurate method for
calculating the aggregate self-emitted radiance for rays traced through the plume.

We have also developed novel techniques simulating the interaction of plumes with
their surroundings. Our primary application of this work is the simulation of heating of
roofs by vents of various types. The technique can also be used to simulate vehicle exhaust

and other similar effects.

vil




Finally, we have established a protocol for future modification of plume calculation
algorithms by end-users of the Digital Imaging and Remote Sensing Image Generation
(DIRSIG) code and implemented the present methods as prototypes. This Generic Plume
Interface (GPI) protocol defines a message set used to request that the plume effect along
a particular ray be calculated and to communicate back to DIRSIG the concentrations
and temperatures along the ray. With this construct in place, any off-the-shelf tool can
be interfaced with DIRSIG through a simple user-written interpreter to make appropriate

inputs to the tool for each ray and to translate the output into the proper format.
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Chapter 1

Introduction

Discharge of effluent gas is an inescapable byproduct of many physical processes. The
type or characteristics of the discharge potentially indicate the nature of the process. Ob-
servation of factory stack gases, for example, may indicate the level of pollutants being
emitted into the atmosphere or the nature of the process being carried out in the factory.
The heating of the ground by exhaust gases from a vehicle may indicate whether the ve-
hicle is in motion or stationary. These and other phenomena are therefore of interest to
the Department of Defense (DoD), the Environmental Protection Agency (EPA), and other
national, state, and local regulatory authorities. The ability to remotely gather data is a
necessity when the sources are in denied areas; even domestically, remote gathering of the
data reduces inconvenience to those being monitored and allows for no-notice verification

of regulatory compliance.

To successfully identify efluent constituents, attention must be paid to all components
of the imaging chain from image acquisition through processing. In particular, the sensor
and algorithms must be suited to each other. Although algorithms can be changed with
relatively little effort, modification of sensor parameters is far more difficult and costly.
Simulation of the imaging process through synthetic image generation (SIG) enables this

design process to achieve an optimum through virtual evaluation of a variety of sensor




designs. The SIG process models radiation propagation through space to a sensor and also
simulates the properties of the sensor if desired. It can thus be used to develop images from

a variety of hypothetical sensors in a variety of conditions.

As with any model, the results of the SIG process are only as accurate as the models
themselves. Although simulation of factory stack plumes has been demonstrated, there are
limitations to the model. In particular, the plumes do not interact with the environment; as
a result, thermal effects from impingement, for example, are not modeled. The objective of
this research is to develop models of plume behavior suitable for synthetic image generation

and to demonstrate their use in generating images. Two primary types of plumes will be

studied.

The first type of plume might be called “primary effect plumes.” Factory stack plumes
are the primary example of this type. The plumes themselves can be easily sensed, and
the plumes may not substantially impact their surroundings (although, if they do, the
interaction should be properly modeled as much as possible). Since they may not interact
with their surroundings, the plume properties themselves must be sensed, and the plume
must be modeled accurately. In particular, the appearance of the plume at a given instant
must be reasonable. As casual observation of a smokestack plume reveals, the plume is
turbulent and its location is constantly changing. Thus, it is impossible to deterministically
model where a plume lies at an instant. However, it is possible to characterize the behavior
of the plume statistically over a certain period of time and then to create a single snapshot

that could be a member of the statistical ensemble.

The second plume type might be termed “secondary effect plumes.” Vehicle exhaust
plumes and rooftop vent plumes are examples of this type. It would be very difficult to
directly observe exhaust constituents from any great distance; in some cases, air would be
the only constituent. However, if the plume impinges upon the ground or another object,
the ground will be heated, causing an observable secondary effect. Such plumes are also

turbulent, but the fluctuations occur much more rapidly than for smokestack plumes. The




envelope of possible locations is much more quickly traversed, so that all possible locations
are likely to have been occupied within the last few seconds. As we are concerned with a
secondary effect such as heating, which is a function mostly of past plume position history
rather than present plume position, the effects of secondary plumes can be modeled using a
single invisible statistical plume. This plume may not look like a real plume at any instant,
but it produces the same effects.

In this work, we incorporate models for both types of plumes into the Digital Imaging
Remote Sensing Image Generation (DIRSIG) code. We have also improved the ease with
which new plume models can be added to DIRSIG through the development of a Generic
Plume Interface (GPI).







Chapter 2

Theory

This chapter discusses the theory of plume modeling and specific aspects of the syn-
thetic image generation (SIG) process. It summarizes the history of plume modeling, partic-
ularly from factory stacks. It reviews the existing plume modeling techniques, the state-of-
the-art in modeling, and the limitations and caveats associated with existing models. It also

discusses techniques for integrating ray paths through plumes to calculate path extinction.

2.1 Traditional Steady-State Plume Modeling

The motivation for most previous modeling of plumes, the prediction of ground pol-
lutant concentration from smokestacks, has remained unchanged since its genesis early in
the century. The concentration is a result of two factors. Downward dispersion of plume
material causes it to reach the ground, while the rise of the plume due to buoyancy and/or
momentum mitigates the ground-level concentration. Early research in the modeling of fac-
tory stack plumes largely concentrated on either dispersion or rise; in free air, the two are
roughly independent of each other, though both are functions of the level of atmospheric
turbulence. Recent developments to model complex behavior such as the flow of plumes
around or over buildings necessarily consider both simultaneously.

Before examining these two phenomena in detail, a brief introduction to the near-




universal Gaussian plume model is given. Plume rise and dispersion coefficients are the

primary inputs into this model.

2.1.1 Gaussian Plume Formulations

The modeling of turbulent diffusion, as with the modeling of turbulence in general, has
been a topic of ongoing research since the 1930s. Unfortunately, no theory is suitable for
general modeling. In a paper published shortly before the beginning of the explosion of
computer power (Pasquill, 1975), three current families of theories were summarized. Only
one of the three is applicable to elevated sources such as smokestacks, and it requires the
assumption of homogeneous turbulence throughout the atmosphere.

Much work in the past twenty years has been devoted to the development of Computa-
tional Fluid Dynamic (CFD) techniques. The goal of this process is to develop techniques,
algorithms, and tools suitable for numerically solving a wide range of fluid flows. Unfor-
tunately, tools for solving turbulent flows are not as mature as those for laminar flows.
Fundamentally, turbulence is a phenomenon that takes place on all scales from the molec-
ular level to large-scale eddies. Direct simulation down to near-microscopic scales has only
been conceivable within the past few years and requires supercomputer resources to solve
even simple flows. More tractable techniques rely on assumptions about the macroscopic
behavior of turbulence that are empirically validated to “close” the problem (provide enough
equations to solve for the flow unknowns). These assumptions often must be tuned to the
particular application and have little intrinsic relation to the actual microscopic processes
(Wilcox, 1994). Thus, in the judgment of the author, these assumptions are no more valid
than the larger-scale closure assumptions, tailored to factory plumes, that are inherent in
analytic plume models.

Because first-principles models are largely inadequate and CFD models are relatively
new, nearly all models for practical application assume that the concentration in a plume is

Gaussian. Although not rigorously true, the assumption is reasonable for many applications.
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Gaussian forms for the concentration can be derived both from a statistical approach to
modeling of turbulence and from a simple diffusion transport model.

Very close to the point of emission, particles travel in straight lines and the distribution
of particles is identical in form to the velocity distribution at the exit; for homogeneous tur-
bulent flow the velocity distribution is observed to be Gaussian. From the statistical theory
of turbulence, in the far-field (typically a few seconds of travel time, but as long as tens
of minutes in the case of large-scale buoyant convection), particle trajectories are uncorre-
lated, and the concentration is Gaussian from the central limit theorem (Gifford, 1975). In
between these two extremes the concentration might not be Gaussian; unfortunately, there
are no conclusive data from this regime. However, experimental evidence shows that the
concentration distributions are often nearly Gaussian (Gifford, 1975). Most models assume
a Gaussian distribution here for convenience, although one assumes a linear profile in the
absence of evidence supporting a more complex form (Halitsky, 1966, 1989). These flow
regions are illustrated in Figure 2.1.

Most models use the basic coordinate system shown in Figure 2.2. The origin of the
system is at the stack or point of release. The z direction coincides with the horizontal
component of the mean wind direction, and the z axis points upward. The y, or crosswind,
axis is chosen to form a right-handed coordinate system. (The sense of y is not important
for basic plume models as they are symmetric and constant.)

Another approach to the study of turbulence is K-theory, which models turbulence as
an analog to heat conduction: the turbulence causes material to flow down the concentration
gradient at a rate proportional to the magnitude of the gradient; Gaussian distributions can
also be derived from this theory (Gifford, 1975). As an example, a practical form of the
diffusion equation, which assumes that diffusion transport is negligible in the windward
direction compared to wind transport and that the eddy diffusivities are constant in the

horizontal and vertical directions is

oC = _oC o0’C 9°C
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Figure 2.1: Schematic Ilustrating Foundations of Gaussian Model

where C' is the average concentration, i is the average wind speed (in the z direction), and
K,y and K, are the constant eddy diffusivities. Under the assumption that K, = K,, =

K, the solution for an instantaneous point source is

C(r,1)

2
_ —~3/2 . r
(4nKT) exp ( 4KT) (2.2)

where @); is the strength of an instantaneous source emission, r is the distance from the
point of interest to the point source, and T is the time of travel from the source.

The primary limitation of such K-theory solutions is the assumption that the vertical
eddy diffusivity is constant. In fact, due to wind shear, this assumption is generally not true.
Fortunately, it is a reasonable approximation for short travel times (Gifford, 1975). Since
gas signatures are strongest in the region closest to the stack, the Gaussian assumption is
not unreasonable for this application.

Specific Gaussian diffusion models were derived from K-theory as early as 1923 (Gifford,
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1975). General use of models to fit empirical data for ground-level concentrations dates to
at least 1936 (Beychok, 1994). The early formulas typically had a particular form for the
dispersion coefficients as a function of downwind distance imbedded in them. A general
form dating to at least 1961 (Pasquill, 1961) is

__Q [ e—(e—he)*/207 | e—(2+he)2/2a§] (2.3)
2noy0,u

where C[g/m?] is the concentration at (z,y, z), Q[g/s] is the source emission rate, and u
is the horizontal wind speed. oy[m] and o,[m] are dispersion parameters, and h.[m] is the
height of the plume centerline at the (z,y) location. The dispersion parameters and the
plume centerline heights are computed from any number of techniques, some of which are
described in the following sections. This form of the equation includes the effects of a mirror
image of the plume located below ground. This is equivalent to modeling the ground as a
perfect reflector, and prevents material from vanishing into the ground. This geometry is

shown in Figure 2.8, and will be discussed in more detail in Subsection 2.2.1.

2.1.2 Dispersion Coefficients

The Gaussian model is often applied to plumes in a variety of atmospheric conditions,
including unstable conditions. Although a diffusion cross-section in such cases may be
locally Gaussian (and is assumed to be so in our work), the plume as a whole probably is
not well-modeled by the simple Gaussian model at any instant due to abrupt changes in the
centerline and local turbulence variations. Thus, for the simple model to have any validity
in all but the most quiescent conditions, it must be used to describe average properties over
some period of time, and the dispersion coefficients used must be appropriate to an average.
For sufliciently long periods of time, the central limit theorem will lead to a Gaussian profile
for the average concentration.

A benefit of the general Gaussian model (Equation 2.3) is that it can be used with dis-

persion coefficients from any source; thus, results for different averaging periods or different
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turbulence levels can easily be determined. This generality was first exploited in 1960 by
Meade and later in 1961 by Pasquill. Although Meade’s work appeared first, he cited an
earlier, unpublished work of Pasquill’s as a model (Gifford, 1976). Pasquill’s (1961) paper
is generally cited as the primary source for general dispersion coefficients. Pasquill’s stated
goal was to “combine in the most flexible manner the various ideas and observations which
are now widely available”.

Pasquill devised six turbulence classes, ranging from highly unstable (class A) to sta-
ble (class F). The class for a particular application is determined by the insolation level
(during the day), the cloud coverage (during the night), and the wind speed. Although not
all sources use Pasquill’s specific dispersion estimates, his stability classes are widespread
(although it must be mentioned that there are other turbulence-typing schemes, most no-
tably one developed by the Brookhaven National Laboratory; a review of schemes is given
in Gifford (1976)). A plot of estimates of vertical and lateral spread for each stability class
is given. Curiously, although he uses Equation 2.3 to estimate concentrations, his data are
not given in terms of standard deviations. For the vertical case, they are given in terms of
estimated height from the plume centerline vertically to the point where concentration is
10% of the centerline concentration. For the horizontal case they are given in terms of the
angle between lines extending from plume origin to 10% points at a given downwind dis-

tance for the lateral case. These measures can be easily converted to o, and o,; according

to Beychok (1994), this was first done by Gifford:

h = 2.150, (2.4)
tan (g) - —(2‘15%) (25)

where A is the plume half-height, and @ is the plume spread angle. The constant of 2.15
appears because a Gaussian curve has a value of 10% of the maximum at a distance of 2.15

standard deviations from the mean.

The history of various dispersion coefficient values is often convoluted. Beychok (1994)
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summarizes many sources and points out inconsistencies. The inconsistencies are not di-
rectly relevant to the current work, so full details are not given here. The most important
point is that Gifford, in 1961, developed a version of the dispersion plots using Meade’s data;
these plots have become known as the “Pasquill-Gifford” dispersion coefficients, despite
some significant differences between Pasquill’s estimates and Meade’s estimates. Turner
later developed a set of estimates, which are perhaps the most widespread; they are very
similar to Pasquill’s. (Beychok, 1994)

In order to automate the process of calculating concentrations, equations for the dis-
persion coefficients are desirable. Several forms have been developed. The form of greatest
interest is one of Turner, which is used by the Environmental Protection Agency (EPA) in

its models. The Turner expressions are
— b
0, = ax (2.6)

oy = 465.11628z tan (8) (2.7)

where 6§ = 0.01753293(c — dIlnz) (Note: 6 here is the plume half-angle, as contrasted
to Equation 2.5, where it is the full angle.) For the vertical dispersion, a and b vary with
stability class and with downwind distance. For the horizontal dispersion, ¢ and d vary with
stability class. In both equations, the downwind distance z must be given in kilometers; the
resulting os are in meters. The constant in the lateral case converts the plume half-angle
to degrees, converts z to meters, and divides by 2.15. Values for the constants appear in
Appendix A.

These equations break down for small values of z; the diffusions approach zero as
z decreases. This problem is typically solved by adding a “virtual source distance” to
the true source distance. Because of this extra distance, the diffusions have finite width
even at £ = 0. In the EPA’s Industrial Source Complex (ISC) model, this distance is
chosen so that the horizontal diffusion, oy, is equal to the stack radius. For long-term,

broad-scale modeling, this choice of virtual source distance does not impact concentration
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calculations significantly; the virtual distances are typically on the order of ten meters, and
thus are negligible when the downwind distance of interest is on the order of kilometers.
However, when close to the stack, this choice can presents problems. With o, equal to
the stack radius, a significant amount of material lies outside of one standard deviation; if
the absorption of the plume is significant (or if scattering were modeled) the plume would
immediately becomes noticeably larger than the stack exit. As mass is conserved, this
causes the concentration in some areas near the stack to be lower than it would be if the
extent of the plume were matched exactly to the stack size. This effect is visible in previous
synthetic images (Kuo, 1997), and it affects the concentration calculations. Furthermore, as
will be discussed shortly, the effect complicates temperature modeling. A possible remedy

to this problem is to match the stack radius to some other number of standard deviations.

As has been mentioned, Gaussian plume models implicitly assume averaging of con-
centrations over some period of time. Unfortunately, Pasquill did not originally state the
averaging periods appropriate for his coefficients. According to Beychok (1994), several
sources (including the Australian govenrment’s environmental agency) assign a three to 15
minute averaging time to Pasquill’s data. In contrast, the U.S. EPA’s models use curve
fits to Pasquill’s data, but assume an averaging time of 1 hour. No rationale is appar-
ent; the first version of the user’s manual for the Industrial Source Complex (ISC) model
(Environmental Protection Agency, 1979) lists Turner (1970) as the source for coefficient
expressions, yet Turner ascribes a 10 minute basis to Pasquill’s data. Pasquill later stated
that the averaging time for his coefficients was about three minutes (Hanna et al., 1982),
but the other assumptions had unfortunately already been codified into practice and statute

by that time.

Although the point is often not mentioned in the literature, Pasquill’s curves and any
that are reasonably similar are applicable only to plumes in level terrain in rural areas.
Several researchers have conducted experimnents over urban areas. The work most often

cited is by McElroy and Pooler (1968; 1969). Briggs (1974) devised a set of equations for
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dispersion coefficients as a function of Pasquill turbulence type that several sources state
are based on McElroy and Pooler’s data; however, the equations are actually an attempt to
reasonably match several data sources (Gifford, 1976). These equations are used in several
EPA models. The expressions for these urban dispersion coefficients, which are polynomials

in z, the downwind distance, are given in Appendix B.

The methods discussed here are those in the widest use, due largely to the EPA’s
adoption of them for its models, most notably the Industrial Source Complex (ISC) and
CALPUFF models. The latest version in the ISC series, ISC3 (Environmental Protec-
tion Agency, 1995a,b), is the standard for regulatory purposes, while the more advanced

CALPUFF model (Scire et al., 1999) is currently being developed.

As the ISC family of models has developed over the course of the last twenty years, new
capabilities have been added. As a result of this evolution, it is not always clear to the new
user why certain methods are used. For example, Briggs’ urban coefficient expressions are
used, but his similar rural expressions from the same work, which attempt to compromise
between Pasquill’s coeflicients and several other significant data sets, are not. Examination
of the first version of ISC shows that it included only rural coefficients (urban cases were
handled by not using the two most stable categories, E and F) (Environmental Protection
Agency, 1979). The rural form has not changed since the initial release, while the urban form
seems to have been added to the ISC2 model. Furthermore, in evaluating newer models,
the EPA has tended to compare them to ISC, e. g., (Environmental Protection Agency,
1998). Thus, the eclectic set of models used in most modeling tools has grown slowly, but
established models have seldom changed. As a result, experiments that were originally
intended as exploratory studies in a new field have become an entrenched standard and
are used in cases outside the scope of the existing datasets. The user, particularly when
attempting to apply existing tools to a new area such as synthetic image generation must

be certain what the original models really represent and must not overextend their use.
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2.1.3 Temperature Modeling

Because it has not been of concern to environmental scientists in the past, there is
no established method for modeling the temperature distribution in a factory-type plume.
Past work has resorted to assuming a similarity between the concentration distribution and
the temperature distribution (as in the models used by Kuo (1997)).

First, the concentration at a point is recast as a dilution, given as

_a__4e
T C  wD*uwC (2:8)

D,
where Co[g/m3] = 7%05; is the concentration at the stack exit, Q[g/s] is the mass discharge
rate of the stack, D[m] is the stack diameter, and w[m] is the stack gas exit velocity. This
dilution of concentration describes how much the plume gases at a point have become
intermixed with ambient air.

Past work has assumed that the temperature dilution at a point is the same as the
concentration dilution (Kuo, 1997); that is,

=TT, =

Dy D, (2.9)

where T is the temperature at a point of interest, T, is the ambient air temperature, and T
is the stack gas exit temperature. From this relation, the temperature at a point can easily
be found given the concentration. Although this seems somewhat sensible, it oversimplifies
the problem. Fundamentally, the diffusion of heat and of mass are governed by the same

functional form. Heat diffusion is governed by

o (5) = [ () v (5 v (52)] e

where p is the fluid density, ¢, is the specific heat (at constant pressure), and k is the
thermal conductivity. The latter is allowed to vary with space (and thus perhaps implicitly
with temperature). This form assumes that the density and specific heat do not vary over

our differential volume; even if they do vary slightly, this form may be useful in a quasi-
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stationary sense. If k is constant in space and isotropic, the equation simplifies to

1 (T
= <E) = VT (2.11)

where « is the thermal diffusivity. Similar derivations for mass concentration lead to,

1/8C\ s
5 (E) =V3C (2.12)

where D is the mass diffusivity.

In solids and liquids Equation 2.11 implies that temperature and mass diffuse in the
same way since density is relatively constant. In gases, however, density changes as a
function of temperature; thus, « is not constant. We allow the density to change as a
function of temperature: p = ps—%— where the s subscript refers to a reference condition

(such as the stack exit).

Accounting for this, Halitsky (1968) developed a similarity argument including density
effects which effectively adds an extra temperature factor to Equation 2.9. The improved

similarity relation is

Dy = L-T, D, = DC-T—“i (2.13)

where D,, is a so-called “volume dilution,” which is the ratio of the volume that a parcel of
gas with a given mass occupies under the conditions at an arbitrary point to the volume that
a parcel with the same mass occupies under the conditions at the stack exit. The additional
temperature factor to correct for density changes makes the final equation for temperature
slightly less intuitive but no more difficult to implement. In the end, the temperature at a

given point is given by

Ta

= ] - L-Ta C
Ts C()

T (2.14)

This relation is valid provided a few assumptions are met:

o The stack gas and ambient air have identical specific heats
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e Conduction between plume gas and the ambient air mixed with the plume is the
dominant mode of heat transfer; radiation from plume gas to far-away regions of the

atmosphere, the ground, or space is negligible

o Plumes do not impinge on the ground or other objects; if they do, mass is still con-

served within the plume, but heat is not because some is transferred to the object

o Plumes do not impinge on each other; if they do, the concentration at a point is the
sum of the concentrations for two plumes, while the temperature is approximately an

average of the temperatures of the two plumes, weighted by their mass flow rates

e Mass and temperature diffuse at identical rates (Lewis number is unity: Le = a/D =

1)

These assumptions are reasonable. The specific heats for common gases are similar, and
most factory stack gases have temperatures on the order of a few hundred Kelvin. Except
near severe terrain, plume rise is sufficient to ensure that plumes do not impinge on the
ground closer than a few kilometers to the stack. For the case of impingement with another
plume, a first-order temperature can still be found if some method is available for identifying
regions of impingement. Finally, the Lewis number for air is reasonably close to unity over a
broad range of temperatures; it is approximately 1.14 at 300K, decreasing to approximately
1.07 at 900K. As the assumptions are reasonable and in the absence of a better method,

the temperature dilution method from Halitsky (1968) is used in this research.

Complications in Temperature Modeling

As discussed earlier, choosing the virtual distance to match o, to the stack radius
causes problems here. Very near the centerline of the plume, the concentration calculated
from the Gaussian distribution is greater than that calculated from the uniform distribution.
This causes the calculated temperature to be greater than the true stack gas temperature.

Slightly further from the centerline, but still at distances less than the radius of the stack, the
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Gaussian concentration is much less than the uniform distribution, so that the temperature
in these regions immediately drops from the nominal stack value. Finally, at radial distances
greater than the stack radius, the Gaussian concentration is still non-zero, so that the
temperature is still elevated above ambient. As mentioned previously, this last problem
(immediate blooming beyond the stack radius) could be mitigated by choosing a different
matching criterion. Choosing o, to be smaller than the stack radius causes more of the
plume material to be confined within the diameter of the stack. However, this exacerbates
the problem near the plume centerline, as the concentration near the center would increase,

further elevating the calculated temperature.

A possible remedy for these problems is to abandon the traditional uniform formulation
for Cy. A very simple possibility is to calculate the concentration using the Gaussian model
at a point on the plume centerline near the stack and use it as Cy. This ensures that
calculated temperatures are not greater than the stack exit temperature, allowing us to
match the stack radius to 20y, but the temperature profile near the stack is immediately
Gaussian rather than uniform. Another alternative is to allow a Gaussian Cp, which would
tend to make the temperature more uniform near the stack exit. This would, however,

break the similarity between the temperature and concentration distributions.

We have found (as will be shown in Section 4.5) that a matching parameter chosen such
that the dispersion at the stack is 1.5 times the stack diameter produces the best-appearing
match between the plume and stack. This factor is much larger than CALPUFF’s and

much larger than we expected.

Finally, our puff-based models make possible a “sub-puff” approach. The diffusion
coefficients calculated by the MIND algorithm (to be discussed in detail in Section 2.2.4)
are effectively for point sources. They approach zero as the distance from the source goes
to zero. The stack can be viewed as a superposition of many point sources, each emitting a
fraction of the total mass emitted by the stack; this concept is shown in Figure 2.3. Close

to the stack, the result is a nearly uniform concentration with small tails at the edges of
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Figure 2.3: Comparison of Traditional (left) and Sub-Puff (right) Stack Radius Matching

the stack. As the dispersions of the sub-puffs grow, they protrude more from the edges of
the sub-puff so that the result tends to a single Gaussian downstream. Mathematically, the
effect can also be viewed as a convolution of a single puff emitted from the center of the

stack with some volume function describing how puffs are emitted across the stack aperture.

For the case of uniform emission the ideal “container” for the sub-puffs is a cylinder
with a diameter equal to the stack diameter and a length appropriate for the emission
rate. The axis of the cylinder should be aligned with the local plume axis, so that each

cylinder is inclined slightly to its neighbors. This alignment calculation is somewhat tedious;
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alternatively, a spherical volume could be used. If the spheres are closely packed, the error
induced would be small. Finally, rather than methodically packing each convolution volume,
a Monte Carlo technique would likely be effective, whereby a number of small MIND puffs
are randomly placed within the volume.

The result of this process would be a concentration distribution that is uniform near
the stack, where the MIND pufls are significantly smaller than the larger spheres and thus
extend little beyond the boundaries of the convolution volume. Moving away from the
stack, the cross-section would gradually transition to a Gaussian distribution as the sub-
puffs become larger, causing their tails to stick out beyond the convolution volumes. When
the puffs eventually become much larger than the convolution volumes the result approaches
that for a single large Gaussian puff.

We have not currently implemented this approach. Rather, we currently use a more
traditional approach, matching the puff size to the stack by adding a fraction of the stack
radius to the standard deviation. This is equivalent to calculating a virtual distance, as
MIND’s diffusion coefficients are nearly linear with distance. As this elevates the near-
centerline concentrations as compared to a uniform distribution, we then redefine Cy as the
concentration at the center of the tenth puff from the stack exit (approximately one meter

from the stack in our implementation).

2.1.4 Plume Rise Modeling

Knowledge of dispersion coefficients for pollutants solves only half of the problem of
calculating pollutant concentration at a point. Use of Equation 2.3 also requires calculation
of the plume centerline height, he, at a given downwind distance. h. refers to “effective”
stack height, the sum of the actual stack height and the plume rise above the stack height.
Unfortunately, as with dispersion coefficients, many sources of data and formulas for plume
rise are available. In 1975, Briggs, the most cited plume rise authority in the United States,

stated that there were at least 50 and probably closer to 100 techniques for calculating
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plume rise. For better or worse, Briggs’ work is the most widely used and is used in EPA

models.

The mechanisms behind plume rise are simple in concept. At the time gases exit the
stack, they have some vertical velocity and very often some elevated temperature. This
causes them to rise due to momentum and buoyancy. As any observer of a stack knows,
they do not rise indefinitely. The interface between the plume gases and the ambient air is
turbulent, causing the plume to entrain ambient air. This entrainment and mixing causes
some of the dispersion discussed in the previous section. It also increases the mass of the
plume, causing its vertical velocity to decrease (in order to conserve momentum). Thus,
the vertical velocity of stack gases decreases with time, causing plumes to gradually level

out and continue at the ambient wind speed.

In neutral conditions, ultimate plume rise is very difficult to measure; at great distances
downwind the pollutants are very dilute, but even a slight upward plume angle may cause
additional rise that can seldom be measured. Most of the time, though, there is a stable
inversion layer, in which the temperature increases with height, at altitudes ranging from a
few hundred meters at night to about one thousand meters during the day (Hanna et al.,
1982). As it encounters the layer, the plume must have sufficient buoyancy in order to
rise throught the warming temperatures in the layer. If it has insufficient buoyancy, it will
remain trapped below the layer. If it penetrates the layer, it will likely be trapped on top.
It is also possible for the plume to partially penetrate the inversion. These three cases may
result from quite similar initial conditions, yet the final plume rise for the three cases is

markedly different.

In his comprehensive review of plume rise models as they existed to that point, Briggs
(1969) gives formulas for four general categories of plumes, categorized according to whether
they are cold or hot and whether conditions are windy or calm. Formulas for plume rise
as a function of distance and for maximum rise are given. This work pre-dates Briggs’ own

Ph.D. dissertation on the subject (Briggs, 1970), in which he developed a semi-analytic
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set of plume rise equations that have been used extensively in the EPA’s models. Even

though many of the formulas in Briggs (1969) have since been modified, and other work has

followed, this source is still a very useful review of the types of models that are available.
The two most basic parameters governing plume rise are the buoyancy and momentum

fluxes. The buoyancy flux parameter is defined as

D? 0% ,D? T, MW,
F = 22y - — 1 -= 2.15
vy ( pa> 9w ( T, MWa) (2.15)

where g is the acceleration of gravity (m/s?), w is the stack gas exit velocity (m/s), D is
the inside top stack diameter (m), ps is the stack gas density (kg/m3), p, is the ambient
air density (kg/m?®), MW is the stack gas molecular weight, and MW, is the ambient air
molecular weight (typically 28.967). The units of F are thus m*/s. It should be noted that
F is not actually the buoyancy flux; it is the initial buoyancy flux (at stack exit) divided by
7pe. All notation in this section follows the convention of Scire et al. (1999). It should also
be noted that nearly all literature has assumed that MW, = MW, which is approximately
true for typical combustion gases.

Similarly, the momentum flux parameter is

D? D? (T, MW
— a2 (P 2 (La s
Fn = w7 (pa) Yy (TSMW,) (2.16)

which is the momentum flux divided by 7p,.

Some of the current EPA models classify a plume as either dominated by bucyancy with
negligible momentum or vice versa. Dominancy is determined by calculating the maximum
rise for each case (using two of Briggs’ equations) and choosing the case that gives the
higher final rise. The specific equations used have varied as models have evolved and vary
between models. Details can be found in the ISC3 manual (Environmental Protection
Agency, 1995b). By comparing the two cases, a critical buoyancy flux parameter can be
derived against which any plume can be checked. It has been shown that plumes from
typical fossil fuel plants will be buoyancy-dominated if the plant output is about 35 MW or

greater (Beychok, 1994). Final rise heights for each type depending on stability conditions
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are given in Environmental Protection Agency (1995b) for the ISC3 model and Scire et al.
(1999) for CALPUFF; those used by CALPUFF are also given below (Equations 2.22, 2.23,
2.24, and 2.25).

Of more interest to the task of synthetic image generation is the plume rise in the
immediate vicinity of the stack. The EPA models (ISC3 and CALPUFF) use Briggs’ 1971
relations. For buoyant plumes, the rise above stack height (in CALPUFF nomenclature) is
given by

3Fz? 13

where z is the downwind distance, (31, the neutral entrainment parameter, is 0.6, and u; is

the vertical stack gas exit velocity.

For jets (momentum-dominated plumes), Briggs’ rise formulas vary with atmospheric
stability. Fundamentally, the stability or instability in a particular set of conditions describe
whether a parcel of air that is displaced vertically tends to return to its original position or
diverges from it. The basic parameter of stability is given by S = -,I-‘!;-g% 0 is the potential
temperature of the air, defined as the temperature the air would have if it were brought
adiabatically (without heat transfer) from its actual pressure to a pressure of 10%dynes/cm?.
Viewed another way, 86/0z can be viewed as the difference between the actual temperature
lapse (change, usually decay) rate with altitude and the adiabatic lapse rate; the adiabatic
lapse rate is the rate of temperature change that occurs when a parcel of air rises without
exchanging heat with the surroundings. For example, if % < 0, a parcel of warm air
shifted upward cools less due to adiabatic expansion than the surrounding air does over the
same vertical distance, causing the parcel to tend to continue rising; conditions are said to
be unstable. Conversely, if conditions are stable, % > 0, the parcel cools more than the
surround air, causing it to sink back to its original level. Finally, if % ~ 0, conditions are

neutral, and the parcel will tend to remain approximately at its new height.
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For neutral conditions Briggs proposed that the rise be calculated as

3 1/3

m-’z

nm — | 55 5 2.1
o= (%) -

where the entrainment coefficient is given by

Bi==+ _ (2.19)
where w is the stack exit velocity.

Equation 2.18 is used by ISC3 for neutral and unstable conditions and CALPUFF for
all conditions; analytic expressions for unstable conditions are difficult to develop, and the
neutral equations have been shown over time to be more useful in stable conditions than
the equations specifically developed for stable conditions by Briggs.

Except near the stack, the shape of the momentum plume rise is surprisingly insensi-
tive to changes in stack parameters. Changing the stack temperature slightly changes the
density, and hence the mass and momentum discharge rates. Increasing the stack discharge
velocity greatly increases the momentum flux, but it also increases the jet entrainment co-
efficient (53;), so that only a slight net height increase results. Although the gas initially has
increased momentum, it also mixes more rapidly with the atmosphere, dispersing this mo-
mentum. Only by changing the stack diameter can the rise rate be greatly changed. Doing
so increases the momentum discharge rate, but does not increase the dissipation rate; thus,
the gas rises more quickly.

The two equations (2.17 and 2.18) were originally presented separately by Briggs, and
they are used separately by ISC3; a plume is assumed to be completely dominated by either
buoyancy or momentum. Briggs (1971) later suggested using a combination of the rises
given by

)1/3

2 = (20 + Zom (2:20)

This approach is taken by CALPUFF; in fact, only the combined form of Equation 2.20 is
given in Scire et al. (1999). An illustration of the relative magnitudes of the buoyant and

momentum factors in plume rise are given in Subsection 2.1.5.
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Equations 2.17 and 2.18 are derived by defining average properties for the plume, writ-
ing differential equations for the behavior of the plume as a whole, and solving. Neutral
conditions are assumed. The physics of the problem dictate that momentum is conserved,
as the actual mass fallout from most plumes is a fraction of one percent (Briggs, 1970).
Buoyancy is conserved since it is assumed that the plume interacts adiabatically with its
surroundings. However, because only average properties of the plume are considered, vis-
cosity and small-scale diffusion are neglected. As a result, the system of equations is un-
derconstrained. An extra relationship must be assumed, based on a guess or on empirical
observations. Normally, this condition relates to how air is entrained into the plume. For
both of these relationships, Briggs assumes that the plume radius at a point is propor-
tional to the height at that point. The proportionality factor is 8. For buoyant plumes, he
finds that 8 = 0.6 in neutral or unstable conditions; this constant is called 8; in Equation
2.17. For jets, Briggs’ equation for the proportionality factor (Equation 2.19) is based on
photogrammetry of plumes (Briggs, 1975).

Theoretically, when plumes encounter stable conditions, a similar derivation leads to
equations that predict an oscillation about the “natural level” of the plume. Because of
damping, though, real plumes do not oscillate very much. Thus, the oscillating relations,
which were used in the original ISC, have gradually disappeared from later models. An
oscillating rise relation is used in ISC3 only for jets in stable conditions. The expression in

CALPUFF nomenclature, which differs from the original ISC notation, is

_|se, sin (:r\/g/us)

i B2
7

1/3

(2.21)

where S, the atmospheric stability parameter, is calculated as discussed earlier. Briggs cites
work by Morton as the source of this relationship (Briggs, 1975). A similar relation can
be derived for buoyancy-dominated plumes, but it is not used by ISC3. CALPUFF has
abandoned all oscillating intermediate rise predictions; Equations 2.17 and 2.18 are used for

all plumes in all conditions. The only surviving use of the oscillating theory in CALPUFF
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is the calculation of final rise for all plumes in stable conditions (Equation 2.24).

All of these intermediate-height plume rise equations are used up until a critical point,
which depends on plume type, after which it is assumed that the plume has leveled off.

In neutral and unstable conditions, the final plume rise is the rise calculated by Equa-

tion 2.20 for a distance x ¢ given by

3.5z* F>0
Ty = (2.22)
4D (w + 3u)? / (usw) F =0

where D is the stack diameter (in meters) and z* is given by

14F%8 F < 55m*/s®
= (2.23)
34F%5 F > 55m*/s®

For stable conditions, the final rise is determined by
2, ql/2 2 1/3
Zop = [3Fm/ (ﬁj usS ) +6F/ (B, usS)] (2.24)

Finally, special consideration is made for calm conditions (wind speed less than 1 meter
per second). In neutral or unstable atmospheres with calm winds a wind speed of us =
1 m/s is used for all plumes. In calm, stable conditions, the maximum rise for buoyant
plumes (F' > 0) is given by

zop = AFY4)5%/8 (2.25)

For non-buoyant plumes in calm conditions, the maximum rise for neutral conditions is
used.

The reader interested in the complete picture of how regulatory plume rise models func-
tion or the derivation of the models is referred first to Volume II of the ISC3 User’s Manual
(Environmental Protection Agency, 1995b) and the CALPUFF User’s Manual (Scire et al.,
1999). Unfortunately, the ISC3 manual generally cites by number which equations from
which sources are used in a given instance and gives the final equation as used in the model.

Therefore, without the primary sources, the manual does not make the derivation clear.
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The reader interested in tracing the development of the equations should therefore also
have available Briggs’ 1969, 1971, and 1975 sources. The intermediate plume rise equations
(the “2/3 law” and “1/3 law,” Equations 2.17 and 2.18, respectively) and their derivations
are best explained in the 1975 source. Maximum rise formulas for jets are drawn from the
1969 source, while maximum rise for buoyant plumes comes from the 1971 source. To see the
equations used in the original ISC model, the original manual (Environmental Protection
Agency, 1979) is needed.

Curiously, the ISC family has not always treated intermediate plume rise as either
completely buoyancy-dominated or completely momentum-dominated (as mentioned briefly
above). The original code used Equation 2.20 for all plumes, as recommended by Briggs,
for unstable conditions. For stable conditions, Equation 2.21 for jets and its counterpart
for buoyant plumes are combined in the manner of Equation 2.20. The maximum height
was determined in an identical way to the current ISC3, by assuming that the plume is
either buoyancy-dominated or momentum-dominated. The reasons for the shift in calcu-
lating intermediate plume rise from the combined approach to the either/or method are
not explained. The change may be related to the general dominance of buoyancy rise

over momentum rise when both are present, which is examined in the section immediately

following.

2.1.5 Modeling Illustrations

In this section, some simple examples using the rise and dispersion relations are given.

First, we examine the plume rise for two stacks. The first is a factory stack, with
parameters taken from Example 3 on pp. 76-77 of Beychok (1994). The buoyancy flux,
wind speed, and temperatures are taken from the example, which uses only the relations for
buoyant rise. A stack discharge velocity is assumed, which then allows the stack diameter
to be found, so that momentum rise calculations can also be made.

The problem parameters are
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Buoyancy flux parameter (F')
Stack gas exit temperature (7%)
Ambient temperature (7,)
Wind velocity (us)

Stack gas velocity (w) (assumed)
Stack diameter (d;) (calculated)
Momentum flux parameter (Fy,)

611 m*/s?

389 K

283 K

4m/s

10 m/s

3m

166.2849 m* /s?

The plume rise calculated using Equations 2.17 and 2.18 separately is shown in Figure

24.

At the scale of Figure 2.4, the combined rise is indistinguishable from the buoyancy

rise, which is dominant. Figure 2.5 shows the rise very close to the stack, including the

combined rise. While the difference between the combined rise and the rise calculated using

only Equation 2.17 is visible, it is hardly significant.
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Figure 2.5: Buoyant, Momentum, and Combined Plume Rise for Example Factory Stack
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Next, we modify the problem to be more representative of a small roof vent. The
problem parameters are

Buoyancy flux parameter (F) 75 m?/s3
Stack gas exit temperature (75) 293 K
Ambient temperature (T,) 283 K
Wind velocity (us) 4 m/s
Stack gas velocity (w) (assumed) 10 m/s
Stack diameter (ds) (assumed) 3 m
Momentum flux parameter (F,,) 217.3 m*/s?

The stack effluent is now only slightly warmed over the ambient, which decreases the
buoyancy flux parameter and increases the momentum flux parameter (because the density
is increased). The stack diameter is a bit large for a roof vent, but is kept constant for
comparison.

Figures 2.6 and 2.7 show the rises for this configuration. Because of the temperature
difference, the buoyancy rise is about half that for the factory stack, while the total momen-
tum rise is about the same, as the increased momentum parameter is offset by the increased
entrainment coefficient. Even with the decreased temperature, buoyancy still dominates the
total rise far from the stack. Very close to the stack, however, momentum rise dominates.
A bit further from the stack, the difference between the combined rise and the buoyancy
rise is roughly constant. It eventually becomes a negligible percentage of the buoyancy rise,
but is significant within a few meters of the stack.

These examples may explain the bias of traditional methods toward buoyancy-dominated
plumes. Even with a small temperature difference, buoyancy rise is still dominant. With a
focus on downstream sampling, little error is made by neglecting momentum rise. Only for
an application such as ours, which images the plume very close to the stack, is momentum

rise appreciable.
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Next, an illustration of the differences in pluine rise and dispersion as stability class
and terrain type are varied is given. The stack parameters, which are identical for all cases,
are

Stack diameter (D) 4 m
Stack height () 30 m
Wind speed (us) 2 m/s
Stack gas velocity (w) 5 m/s
Stack gas exit temperature (7,) 320 K
Ambient temperature (7,) 300 K

Concentration maps for Pasquill stability classes A (unstable), C (neutral) and F (sta-
ble) for both rural and urban terrain are shown in the figures of Table 2.1. Higher concen-
trations are shown as darker shades. All images are in a vertical plane passing through the
centerline of the plumes. As expected, the plume disperses more in unstable conditions and

less in stable conditions. For a given stability class, it disperses more in urban terrain than

rural terrain.
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Table 2.1: Plume Rise and Dispersion for Various Conditions. From top to bottom: Stability
Classes A, C, F. Left Column: Rural Terrain. Right Column: Urban Terrain.
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2.2 Advanced Plume Modeling Methods

In the past few years, increases in computer power have enabled far more advanced
computer models to be practically used. These techniques more accurately simulate plume
behavior in changing meteorological conditions, in complex terrain, and near buildings.
Although some of these capabilities can and have been incorporated into traditional models
such as ISC3, newer puff models provide a better framework for adding new capability. The
basic characteristics of puff models and some advanced capabilities relevant to this research

are examined here.

2.2.1 Puff Models

The plume models described throughout Section 2.1 are developed for steady-state
conditions. Spatial and temporal wind changes are not allowed. Puff models eliminate
this restriction by simulating a plume as a series of closely spaced puffs. By tracking puffs
individually, more complex behavior can be modeled. The EPA has recently funded the
development of the CALPUFF II system. Among other features, this software allows for
spatial and temporal wind variations. It includes more advanced modeling of plume behavior
in complex terrain than ISC3 does. Other features, such as wet and dry deposition and

plume chemical transformation use the same models as ISC3 (Scire et al., 1999).

The main equation for concentration due to a puff in CALPUFF is

__Q dz dz
C = G gexp 207 exp 207 (2.26)

where d, and d. are the downwind and crosswind distances from the center of the puff, o

and oy, are the standard deviations in the along-wind and cross-wind directions, and Q is
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the pollutant mass in the puff. ¢ is the vertical contribution, which is given in theory by

o (o |- oL | o |-

7= (27)Y/20, 202 | 202
© 2] _ 2
Z exp | [2nh (H; zr)] +exp |- [2nh (H; + zr)] + (2.27)
~ 202 | 202

202 202

) {_ [2nh + (H, — z)2 texp [_ [2nh + (H, + 2,)]

)

where H, is the height of the puff center above ground, o, is the standard deviation of

the distribution in the vertical direction, z, is the height of the point of interest above the
ground, and A is the height of the well-mixed layer that the plume is trapped in (which
may be made very large if the atmosphere is unstable). The form of the equation shown
here is actually adapted from another source; the form in the CALPUFF manual is valid
only at ground level. In these equations, the r subscripts stand for “receptor.” This
term is used throughout the ISC3 and CALPUFF documentation because the codes are
traditionally used to simulate the concentrations that would be measured by sampling
devices at discrete points, and concentrations in these codes are calculated only at receptors.
Since our application does not involve physical receptors, we use the term “point of interest”
when possible, but occasionally refer to receptors for consistency with ISC3 or CALPUFF
documentation.

The two terms on the first line of Equation 2.27 are the contributions from the real
plume and its image below the ground (as in Equation 2.3); this situation is shown in Figure
2.8. Using a virtual source in this manner simulates total reflection from the ground. At a
point of interest, the concentration is the sum of the concentration from the actual plume
and the concentration from its mirror image.

Extending the use of images to simulate reflection or trapping of the plume below an
inversion or mixing lid, additional sets of images can be constructed. These images, and
their images in turn, give rise to the summation in Equation 2.27. In the full form, the

summation describes an infinite number of reflections between the ground and the mixing
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Figure 2.8: Use of Image Stack to Simulate Plume Reflection from Ground
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lid.

For the special case of e = 1, Equation 2.27 reduces to

1 (H, — z,)? [ (H,+2)?
9= (2m)/%0, {exp { 252 + exp 202 +
_[2h— (He— =) [ [2h— (He + )]
exp [ 207 + exp 207 + (2.28)
Oh + (Hy — 2)? [ oA+ (H. + 22
oxp [_[ + e z) } Foxp |2t (He ) H
o 202

which is the form actually used by CALPUFF. The stack images for Equation 2.28 are
shown in Figure 2.9. In this figure, the plumes and Gaussian distributions are deleted for
clarity. A point of interest is shown, and the manner in which different terms in the equation
correspond to different images is illustrated.

The two terms on the second line of Equation 2.28 are the contributions of two imagi-
nary stacks obtained by reflecting the real stack and its original below-ground image about
the ceiling of the mixed layer; these are at the top of Figure 2.9. They provide for a single
reflection from the mixing ceiling, either directly or after reflection from the ground. The
two terms on the third line of Equation 2.28 are obtained by reflecting the two stacks from
the second line about the ground; they are at the bottom of Figure 2.9. They thus provide
for a bounce from the ground after reflection from the ceiling (allowing for the reflection
sequences ground-ceiling-ground and ceiling-ground). Additional terms in the summation
would add more images of the source, providing for more multiple reflections of the plume.
At some distance downwind, the material becomes evenly distributed between the ground
and the mixing ceiling.

It is noted that there is no causal factor in Equations 2.27 and 2.28. No check is made
to determine whether the sensible plume has in fact reached either the ground or mixing
lid, so that reflection has occurred. Thus, even a fraction of a meter from the stack, the

concentration predicted by the equation incorporates all of the bounce terms included in
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the series. In practice this introduces minimal error, as a point near the stack is many
standard deviations away from any of its images, so that they add only a negligible amount
to the total concentration. This non-causality drawback is probably no more severe than
the Gaussian assumption itself, which predicts non-zero concentrations at all points in space

at any time.

2.2.2 Slug Models

Although splitting a plume into puffs offers many advantages over traditional mono-
lithic models, tracking many puffs is computationally expensive. This is a drawback partic-
ularly close to a source, where many puffs are needed to accurately represent the curvature
of the plume. In order to accurately represent the concentration, puffs should be separated
by no more than 2.00y, which yields a concentration half-way between the puff centers of
approximately 96% of the correct value (Scire et al., 1999). As puffs move downstream,
they grow, and thus become more closely spaced when normalized by their dispersion. The
computational burden of tracking these puffs may become excessive.

The CALPUFF system introduces a revised puff formulation, called a slug, for these
situations. The slug appears as an elongated puff and is equivalent to a series of puffs, each

with infinitesimal mass. The formulation for the slug is

Fq d? u?
O — - 2.29
c() (2W)1/2u,gygexp[ 202 2 (2.29)

where u is the mean wind speed, v is the so-called “scalar wind speed” (defined as w/ =
(u? + 0'12,)1/ 2, where o, is the wind speed standard deviation), F is a “causality” function,
and g is the same vertical factor as defined in Equation 2.28. ¢ is the source emission rate,
in units of mass per time (as opposed to the total mass for a puff, Q). d. is the distance
from the receptor to the slug, as measured perpendicular to the slug axis. The ratio of
wind speeds is included to reasonably handle calm situations; for wind speeds more than

a few meters per second, it is effectively unity. Conceptually, o, varies along the length of
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the slug according to the Pasquill-Gifford curves or other relationships, as it does in the
monolithic model; in practice, CALPUFF calculates concentrations at the ends of the slugs
and at receptors (points of interest); therefore, a ray tracing code would be responsible for
interpolating between the dispersion coefficients at the ends of the slugs as needed.

Neglecting the F' factor, which will be discussed momentarily, the basic form of the
Equation 2.29 is a broadening quasi-cylinder with Gaussian decay. Horizontal decay per-
pendicular to the slug axis is provided directly by the exponential term, while vertical decay
is included in the g term.

The equation as presented so far is essentially identical to the traditional monolithic
model of Equation 2.3. The differences are inclusion of the mixing lid effect in the vertical
(g) term and the use of the scalar wind speed rather than the average wind speed. Neither
of these is intrinsic to the slug model; in fact, the mixing lid effect is incorporated in the
ISC series of codes. The difference between the slug and the traditional plume model is in

the F factor. This factor limits the spatial extent of the slug in the along-axis direction. It

_l er da,2 —er "‘dal
F = 2{ f[ ﬁayz} ,f[——ﬁayl}} (2.30)

where d,1 and d,2 are the components of the distances from the receptor to the “young”
young

is given by

(most recently emitted) and “old” ends of the slug in the along-slug direction, with the
signs of both chosen so that the positive direction is in the direction of the opposite end of
the slug (i. e., the positive directions are opposite, and both point inside the slug). o,; and
gy2 are the horizontal dispersion coefficients at each end of the slug, which are in general
different. erf is the “error function,” defined as erf(z) = —\% foz et dt (i.e., it is obtained by
integrating the normal function).

An example causality function is shown in Figure 2.10. The end points of the slug are
at 20 and 80 units, with dispersion o1 = oy2 = 2 units.

Intuitively, this causality function, which could be recast in terms of integrals of Gaus-

sians, works well. Because of the chosen signs on the distances, each of the erfs is positive
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Figure 2.10: Example Causality Function

if its slug end has not reached a point of interest and negative if it has. At points well
outside the slug, neither end has passed or both ends have and both erfs evaluate to the
same value (either +1 or -1); thus, there is no net concentration when the erfs are sub-
tracted. For points well within the slug, the erf for the older end evaluates to 1, and the
erf for the younger end to -1, so that ' = 1. For points near the ends, the erfs vary, and
the concentration falls off. It is stated in the CALPUFF manual (Scire et al., 1999) that
the “tails” decay in such a way that, as adjacent slugs overlap, the steady-state monolithic

solution is produced.

Slugs have not been used in our present work nor implemented in computer code. First,
simulation of high-resolution plume meander is much more straightforward with puffs, since
slugs cannot be easily bent in the middle. This difficulty is also significant near the stack as
the plume is bending over, though CALPUFF should choose to use puffs in this region. We
present the theory for the benefit of lower-resolution applications, which may be able to use

a coarser slug-based plume, and as a bridge between monolithic techniques and puff-based
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techniques.

2.2.3 Advanced Dispersion Modeling

The CALPUFF system models a variety of phenomena that enhance the accuracy
of any model. Some of these features will not be used in this research, as they conflict
with the methods used to introduce meander into the plume trajectory, but they still bear
mention. The features include development of conventional dispersion coefficients from
actual turbulence data or micrometeorological data, the splitting of puffs that encounter
velocity gradients, penetration of the top of the mixed layer, and vertical transport of
puffs that converge horizontally. Since none of these factors directly impact the generation
of synthetic images of plumes, they will not be discussed in great detail here. The most
significant of them are briefly discussed to highlight the capabilities that increase the realism
of the modeled plumes.

Approximation of dispersion coefficients based on local micrometeorological data is a
significant improvement for regulatory applications. The range of local information that
can be used varies greatly. If turbulence measurements are available, they can be used to
estimate dispersion. If they are not, statistics on the standard deviation of the wind speed
can be used, certainly with no less accuracy than what would be obtained using Pasquill’s
or other generic values. In a slightly different way, the MIND model (to be discussed
subsequently) generates instantaneous diffusion coefficients based on wind data.

CALPUFF also interpolates wind speed based on observations from various stations to
generate a spatially varying wind field. In general, this feature would make plume images
more visually realistic. For relatively constant winds, average ground concentrations are
not likely to change greatly with small changes in wind; however, small changes tend to
make plumes look less artificial, a benefit when generating synthetic images. The variable
wind speed can also be used as a tool in simulating other conditions. For example, wind

speed variation around buildings could possibly be simulated, although this would likely
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over-extend CALPUFF’s method. This could be used to affect the temperature of the
ground and other nearby objects, resulting in more realistic contrast variation in thermal

imagery, even in regions where plumes are not present.

2.2.4 Short-Term Models

As has been mentioned, nearly all current models report concentrations averaged over
a time on the order of many minutes. This averaging is suitable for many pollutants, where
long-term exposure is important. Since these averaging models are computationally simple
and most important for environmental applications, they have been developed thoroughly

in the past fifty years.

Nearly all imaging devices, on the other hand, capture an instantaneous image of the
scene. Thus, for SIG applications, we need to make some correction for the averaging time
used in the models. Simplistically, this can be done by reducing the dispersion coefficients
to reflect a shorter time period; this is an option in the ISC models. This approach is valid
for small changes in averaging time, but not realistic for times less than a few minutes. To
attempt to model an instantaneous plume, the fluctuations in the location of the plume

centerline, caused by short-term wind fluctuations, must also be characterized.

Fluctuating models are not new; a statistical framework for studying fluctuations was
developed in Gifford (1959). The early studies were aimed at comparing peak instantaneous
fluctuations to peak long-term fluctuations, so that quick-fix multipliers could be applied

to long term models to estimate peak concentrations.

Fortunately, with the increase of computer power in the last 15 years, more advanced
short-term models that actually track the location of the plume over time are being devel-
oped. The intended use of these models is modeling of highly toxic pollutants, where peak

exposure is more important than average exposure. With some adaptation, they are highly

suitable to the SIG process.
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2.2.5 The MIND model

The most significant work found to date in this area is the work of Peterson, Lamb, and
O’Neill, of Montana Tech and Washington State University. Through the early 1990’s, these
researchers collected high frequency (1 Hz) wind data and developed techniques and models
that give results similar in character to the empirical data (Peterson, Lamb, and Stock,
1990), (Peterson, Ballard, and Lamb, 1995), (Peterson and Lamb, 1995, 1996), (Mazzone
and Peterson, 1996), (Peterson, O’Neill, and Lamb, 1996), (O’Neill, 1996a,b), (Peterson,
Mazzolini, O’Neill, and Lamb, 1999).

The end product is a model known as the Meandering INstantaneous Diffusion (MIND)
Model (O’Neill, 1996b). This program takes high-frequency wind data (assumed to be
taken at the plume source) and general information about the conditions (Pasquill-Gifford
stability, etc.) and calculates the progress of a plume over time. Two features of this model

are important to the current research.

Wind Smoothing

First, the high-frequency wind data are smoothed to reduce the random effects of
turbulence away from the location where the data were taken. This is done by estimating

the travel time from the plume source to a given location according to

r

where 7 is the distance from the plume source to the point of interest, U is the mean wind
speed, and oy is the standard deviation of the wind speed. This travel time is then used as
a window for a moving average process. Thus, for points of interest close to the source, the
travel time is short, the data are not smoothed very much, and random variations remain.
Further from the source, a wider window is used, the wind is smoothed more, and the average
wind speed dominates plume behavior. The wind speed used in calculating the smoothing

window is the 90th percentile speed (i. e., the mean plus 2.15 standard deviations), which
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makes the travel time shorter than it would be using just the mean wind speed, preserving

more of the random character (Peterson et al., 1990).

Instantaneous Diffusion

Second, the MIND model finds instantaneous diffusion coefficients through one of sev-
eral equations developed and tested by the researchers; these depend on the long-term
diffusion (from the traditional Pasquill-Gifford relations) or on standard deviations of wind

angles. For example, the default instantaneous dispersion coefficient is
Oyi = 04 = 0.284909pT (2.32)

where ggp is obtained by taking the standard deviation of the wind direction over each
smoothing window and averaging the results and r is the distance from the source. In a

more recent paper (Peterson et al., 1999), this relationship is revised to
0; = (0i02)"° = 0.284909 57 (2.33)

Although no guidance is given for choosing the individual coefficients, this formula gives
some method for varying the coefficients with respect to each other. One possibility, other
than setting the two coefficients to equal each other, is to set the two coefficients so that the
ratio of the vertical coefficient to the horizontal coefficient is the same as the ratio for the one-
hour Pasquill-Gifford coefficients. Another possibility would be to choose the coefficients to
simulate a particular plume phenomenon such as a coning plume, which disperses more in

the vertical direction, or a fanning plume, which disperses more horizontally.

Concentration Calculation

Following calculation of the smoothed wind speed and the instantaneous dispersion
coeflicients, the concentration at a point of interest can be calculated using a Gaussian
equation. This portion of the MIND code is not actually used in the current research;

rather, only the smoothed wind direction is actually found by the original MIND code.
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It is assumed, as in the MIND code, that the centerline is located in the direction of the
smoothed wind speed from the source. (Because of this assumption, MIND does not actually
propagate material in time; the plume at any instant is effectively made up of segments of
non-meandering plumes that each originate at different points and peint in slightly different
directions.) MIND’s estimates of the instantaneous diffusion are used, as they are much

better suited to the present task than CALPUFF’s estimates.

2.2.6 Interaction of CALPUFF with MIND

Unfortunately, some features of CALPUFF are incompatible with the use of the en-
tire MIND program. While CALPUFF models terrain effects, MIND operates under the
assumption of a flat earth. In the case of puff location, we reconcile the two by using the
plume centerline shape output by MIND as a perturbation of the puff locations found by
CALPUFF, as shown in Figure 2.11. This seems a reasonable approach unless terrain is
too severe; even then, the perturbed plume will likely look “about right.”

Because we treat the MIND-derived wind field as a perturbation and apply it to the
CALPUFF plume regardless of its orientation, we should not use the exact same random
wind sequence for plumes within the same scene. If we were to do so, fluctuations calculated
by MIND would affect all plumes, as shown in Figure 2.12. In particular, large motions
would be visibly seen in all plumes simultaneously. To avoid this, multiple sequences with
the same statistics are used.

The dispersion calculations of the two models, however, are not compatible. Thus,
CALPUFF’s modeling of building-induced dispersion, which locally increases the dispersion
coefficients, and CALPUFF’s variation of dispersion coefficients with terrain type, cannot
be easily reconciled with MIND’s dispersion coefficient calculations, which are based solely
on wind statistics. As MIND’s dispersion relations are based on short-term data, it is more
reasonable to use MIND’s calculations. Even if it were possible to incorporate CALPUFF’s

dispersion effects, this might not be wise, as the building-induced dispersion and other

46




MIND Path on

CALPUFF Plume MIND Meander Path CALPUFF Plume

Figure 2.11: Superposition of CALPUFF and MIND Calculations

Figure 2.12: Effect of Wind Perturbations on Multiple Plumes

47




effects are based on curve-fits to one-hour average data, and thus might not be scaleable
with any reliability to shorter time periods. In summary, our composite CALPUFF-MIND
plume is deflected by terrain (since the baseline position is determined by CALPUFF, which

models variable wind flow), but the dispersion is not affected by terrain or land use type.

2.3 Wind Modeling

Using the techniques of the MIND model just discussed to simulate the instantaneous
position of a plume requires high-frequency wind data (which is then smoothed). Although
it would be possible to use experimental data, a more attractive approach is to derive a
model for the wind process and generate random wind fields for each scene. This approach
would make each plume unique, and might also contribute some information about how the
wind parameters vary with changing stability class. The goal of this section is to develop
a model that is able to generate artificial wind sequences that are statistically similar to
actual wind data. In statistical terms, the wind speed and direction are time series.

The problems of modeling and forecasting time series data have been studied exten-
sively in the statistics community over the past thirty years. The principal work cited as
the foundation in this area is Box and Jenkins (1976). The procedures for developing a
Box-Jenkins Model, also known as an ARIMA (AutoRegressive Integrated Moving Aver-
age) model for a particular series have also become well established (see Bowerman and
O’Connell (1987)).

Past studies have developed ARIMA models for wind patterns over long time periods
(years) (Breckling, 1989). Also, Hanna (1979) has shown that, when averaging over a
significant number of similar data points, the wind speed at a particular time is linear
with the speed at a previous time (which will be described shortly as an autoregressive
model of order 1). These results suggest that investigating the use of an ARIMA model for

high-frequency wind data is appropriate.
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2.3.1 Taxonomy and Definitions of ARIMA Models

The general ARIMA model consists of three separate types of behavior, which can be

combined in various ways as shown in the table below.

Type of Model Nomenclature
Autoregressive AR

Moving Average MA
Autoregressive Moving Average ARMA
Integrated Moving Average IMA

Autoregressive Integrated Moving Average ARIMA

AR Models

The first type of model, the autoregressive process, is governed by the behavior
=zt eZiat o+ GpZip oy (2.34)

where Z; = z; — p is the deviation from a fixed value of the newest value in the time series,
Zt-1,.-.,%t—p are the p most recent deviations in the time series, ¢1,...,$, are constant
weights, and a; is a white noise random variable, known as a “shock,” with zero mean and
variance 0,2. The value y is the true mean if the process is statistically stationary 1; if it
is not, it is some other arbitrary level. This model is known as an autoregressive model
of order p, or an AR(p) model. As can be seen from the equation, the deviation from the
mean for the present value is a weighted sum of the deviations for the p immediate past

values, with a single new random element.

MA Models

The second process is the moving average process. Its governing equation is

Z't = a — 910,,5_1 - 9204;_2 — = 9qat*q (235)

LA process is said to be stationary if certain statistical properties are invariant. Practically, we are
concerned with whether the mean wind direction for one arbitrary group of data points is the same as the
mean for all other arbitrary groups. This, of course, is not strictly true of the wind over long time periods,
but may be true for limited periods of interest.
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where 01, ..., 0, are constant weights, and ay,...,a;_4 are a series of shocks. This model is
known as a moving average model of order ¢, or a MA(g) model. In this type of process, the
present value is not directly a function of the immediate past values. The values will, how-
ever, tend to be correlated (or perhaps negatively correlated) for small lags since the value

z; and the value z_, (0 <n < g) are both functions of the set of shocks {a;—n, ..., 8¢}

ARMA Models

Taken together, the autoregressive and moving average models can be combined into
an ARMA(p, ¢) model. This model is probably the most commonly used time series model.

The combined governing equation is
Zi=P1Z 1+ P o+ + PpZptar— 0101 —Orap o — - — 0404 (2.36)

IMA and ARIMA Models

The ARMA model, along with its constituents, the AR and MA models, are suitable
for processes that are inherently statistically stationary, so that the mean is constant over
short periods of time. Many processes do not meet this criterion, but seem to have a
gradually fluctuating behavior about a long-term mean average. For these processes, a
sequence of differences between values at a certain interval tends to be stationary. The
integrated moving average (IMA) and autoregressive integrated moving average (ARIMA)
models account for this behavior. Conceptually, these models are found by replacing every
occurrence of Z;_,, n = 0,1,...,p in either an MA model or an ARMA model with some
form of difference z;—pn — 2(t_p)—s-

Two types of differencing are used. The nonseasonal operator replaces Z with V%z,
the “dth regular difference.” The differences are given by Vz; = z; — 21, V2z = (2 —
zt—1) — (#—1 — 2t—2) = 24 — 22z:_1 + 21_2, etc. The first difference is sufficient for processes
that change in level, but have approximately zero slope over any region of interest. The

second difference allows for fluctuations in both level and slope (Box and Jenkins, 1976).
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In operator notation, V¢z = (1 — B)%z where B"z; = 2;_,, (It is noted that Vz; = V2,.)
This nonseasonal operator accounts for miscellaneous fluctuations.

A second type of differencing operator, known as a seasonal variation, is of the type
Vi =1 — B, where L is the appropriate number of “seasons” (quarters, months, weeks,
etc.). This operator is used to account for data that experience regular temporal changes,
such as resort occupancy, retail sales, etc. (Bowerman and O’Connell, 1987). This operator
can also be raised to some power, as Vf = (1- BH)P,

Differencing operations can be added to the AR and MA models in two ways. Tradi-
tionally, the data are pre-analyzed to determined whether seasonal or nonseasonal differ-
encing, are necessary. At the same time, other transformations (e. g., logarithmic trans-
formations) can be made. This approach is assumed in Bowerman and O’Connell (1987),
which denotes the original data as a series y;, the data after a logarithmic or other sim-
ilar transformation as y;, and the final data after a “general stationarity transform” as
n = VPViy; = (1 — BY)P(1 — B)4y}, which is then fed in to the ordinary time series
model as stationary data. Modern software can apply the differencing operation at the

same time as the other operators, as will be discussed shortly.

Constant Term

The previous forms of the models have all assumed that the process in question, as
submitted to the AR, MA, or ARMA models, is stochastic, i. e., that the true mean of
all realizations of the process is uniform. For non-stationary data, a general stationarity
transform was discussed. If the only non-stationary trend is a constant drift of the local
average, however, the full differencing transformation can be avoided through the addition
of a constant term to the model. In these cases, the p embedded in the Zs contained in the
models is some convenient level, such as the estimated value of the true mean as determined
by the average of a set of experimental values, rather than an actual true mean.

The trend is added to any of the models by simply adding a constant to the right hand

51




side of any of the models. This term is denoted as 6y in Box and Jenkins (1976) (notionally
lumping it into the MA operator) and § in Bowerman and O’Connell (1987). As a result
of this term, each value in any sort of model will tend to be shifted a small amount in
one direction from the value predicted by a stochastic model, and the predicted time series
will wander over time. A constant is not necessary if the data have already been made
stationary through differencing operations or other transforms (alternatively, it could be
included in the analysis; if it turns out to be statistically significant, then the transformed
data are not stationary, indicating a problem with the original transformation).

The constant term can also be used for convenience to eliminate the need to subtract
the mean from each data point. For example, the autoregressive equation (Equation 2.34)

can be rearranged as

zg— = P1(ze—1 — ) + b2(z—2 — p) + - + Pp(2e—p — 1) + @2 (2.37)
=(—¢1—2— - —Pp)u+ 121+ Pazpp + - + Ppzi_p +ay

so that

z=(1—-¢1—do—-—d)p+drze 1+ oz o+ -+ Pp2p+a (2.38)

Using the constant in this manner is convenient, but also hides immediate evaluation

of whether there is a non-stationarity being corrected by the constant.

Parsimonious Models

Following traditional methods, raw data are first transformed to make them stationary,
and the transformed data are then fed to the appropriate AR, MA, or ARMA model. With
more modern computer software, the differencing process can be done at the same time as
the ARMA modeling. This is much more convenient, but it possibly encourages inclusion of
terms beyond what are necessary for a parsimonious model (i. e., the model with the fewest

terms of those that adequately describe the data). Thus, when running a full ARIMA
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model, the user should first examine plots of the data with and without differencing to
determine whether it is necessary, and should examine the error of the model and the

statistical significance of new terms as the order of the AR and MA processes are increased.

2.3.2 Theoretical Behavior of Models

Measures of Behavior

The tentative identification of an appropriate time-series model for a given set of data
(as summarized in Bowerman and O’Connell (1987)) is made by examining the Sample
Autocorrelation Function (ACF) and Sample Partial Autocorrelation Function (PACF) and
comparing these to the general behavior of the theoretical ACF and PACF for a given model.
(The ACF and PACF are referred to as the SAC and SPAC by Bowerman and O’Connell
(1987)).

Sample Autocorrelation Function

Fundamentally, the sample autocorrelation function at lag k of the series zp, 2p41,- .-, 2n

is the expected value of Z;_jZ;, which can be calculated by

n—k

> (2t = 2) (20—, — 2)
S (2.39)
Z‘;(zt - z)?

This quantity measures the tendency of data points spaced by k time units (“lag k") to
move together in a linear fashion. It is easily seen that 7o = 1, and it can be proven that
—1 < r, < 1. For an AR process, the ACF is infinite in extent since each value is a weighted
function of the previous values. The function gradually decays, but there is always a residual
chain of influence. For an MA process, on the other hand, the ACF is zero at lags greater
than the order of the MA process. This is not surprising, as two values at greatly different

times are functions of different random shocks.
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Sample Partial Autocorrelation Function

The meaning of the partial autocorrelation is difficult to describe. Intuitively, Bow-
erman and O’Connell (1987) state, “This quantity may intuitively be thought of as the
sample autocorrelation of time series observations separated by a lag of k time units with
the effects of the interﬂening observations eliminated.” The sample partial autocorrelation
at lag k, rgg, is derived by finding the highest-order weight, ¢xx, that would be obtained
if an AR(k) model (as in Equation 2.34) were used to model an actual AR(p) process. It
can be shown (as one would expect) that, for AR processes, rg, = 0 for & > p. Thus, the
partial autocorrelations of an AR(p) process are a set of p numbers; through a relationship
known as the Yule-Walker equations, they completely describe the (infinite) autocorrelation
function (Box and Jenkins, 1976). For an MA process, the PACF is very complicated (even
Box and Jenkins (1976) do not provide details), but is in general a sum of two exponentials
(either real or imaginary), and is thus a decaying function or a damped sine wave.

The sample partial autocorrelation function at lag k& can be estimated through a re-

gressive relationship developed by Durbin as

Il ifk=1

k-1
Tkk = Teh— Z Tk—l,j'rk—j (240)
% ifk=2,3,...
1— E rk_l,jrj
=1
where
Thj = Th—1,j — TkkTh—1,k—; forj=12,...,k—1

Box and Jenkins (1976) point out that this algorithm is very sensitive to rounding errors
and should not be used if the process is close to being non-stationary. It is not clear from the
documentation whether Minitab, one of the packages used to fit models, uses this method
or another; the other model, R (R Development Core Team, 2001), uses the Yule-Walker

method.
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2.3.3 Model Identification

The theoretical characteristics of the ACF and PACF are the primary tool for deter-
mining whether a process is AR or MA. Pure AR processes have infinite, decaying ACFs
and PACFs that abruptly “cut-off” at lags greater than the order of the process, while pure
MA processes have ACFs that cut-off and PACFs that decay. (This duality between the
AR and MA processes has other aspects, but the details are not relevant to the task at
hand.)

To determine the appropriate type of model to be used, the ACF and PACF for the
empirical data in question are estimated using Equations 2.39 and 2.40. Each is then
characterized as either “cutting off” (high values or “spikes” at low lags, abruptly changing
to low values) or “dying down” (damped exponential or sinusoidal). From these results,
a tentative model is chosen as indicated in the following matrix (advice adapted from
Bowerman and O’Connell (1987); see that source for more detailed information). We present

the model development results for our wind data in Section 3.2.3

| Behavior ACF dies down ACF cuts off after lag ¢
PACF dies down ARMA (1-2 order) | MA(q)
PACEF cuts off after lag p || AR(p) No theoretical model;
try AR(1) or MA(1)

2.3.4 Varying Wind Speed Effects

In addition to the cross-wind meander incorporated using the techniques of Peterson
et al., we introduce a motion of puffs in the downwind direction due to fluctuations in the
wind speed. Overall, the distance is corrected according to the ratio of the time to reach its
position as calculated from the average wind speed to the time according to the fluctuating
wind speed. Incorporation of the method requires, therefore, a wind speed sequence, which
can be either experimental or synthetic. We have chosen to use a synthetic sequence of
ten-second averages (consistent with the wind speed) that are Gaussian random variables

with the appropriate mean and standard deviation. These are then up-sampled along with

55




dcqrpurr | U

-\ \ A

K AR /

N>~ 7] /
AV N A VA W 1

d =dcypurr

c

Figure 2.13: Calculation of Distance Correction Factor from Wind Speed Sequence

the direction to produce a high-frequency speed history. This approach is simpler than
directly modeling the speed as an autocorrelated sequence at high frequency. Although the
speed is autocorrelated at lags of a few seconds it is uncorrelated for ten-second averages.
As the effect of the axial puff motion is not as noticeable as crosswind meander, neglecting

the autocorrelation is not likely a source of significant error.

The process of calculating the distance correction is shown graphically in Figure 2.13.
Beginning at the location of the puff at the time of interest, as given by CALPUFF, we
step backward from that point in the wind speed sequence. Each second, the wind speed
describes how far the puff travelled in that second. Summing the speeds, we continue until
we reach a distance greater than the distance from the stack. The accumulated time to this
point is 7. We then correct 7 to account for the fractional second by which the stack was

overshot; the revised travel time is 7.
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Figure 2.14: Comparison of Plumes With and Without Downwind Puff Movement

As stated above, we divide the travel time derived from the mean wind speed by the
travel time from the random wind sequence. This ratio is then multiplied by the distance

from the source from CALPUFF to give a new distance:

doaLpurr/t (2.41)

c

d=doaALPUFF

where d is the revised distance from the source, doarpyrr is the distance from CALPUFF,
4 is the mean wind speed, and 7. is the corrected travel time.
A comparison of plume rise with the downwind puff movement correction to an uncor-

rected plume is shown in Figure 2.14.
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Figure 2.15: Effective Property Method for Calculation of Radiance

2.4 Numerical Integration of Concentration

Whatever the method used to find the concentration at a point, the absorption caused
by the concentration must be integrated along a path in order to find the total extinction
along a ray, which is then used to produce a synthetic image of the plume. This integration
could be most easily done if an analytic solution were available; unfortunately, this is not
the case.

For monolithic plumes (i. e., those from ISC3 or similar models), integration of concen-
tration is difficult. The plume is not easily identified as an entity; although the concentration
can be found at a particular point, the boundaries of the plume in general are not easily
described. As a result, past efforts involving the optics of plumes (Kuo, 1997) have relied
on average concentrations within a small volume, and the concentration is then assumed to
be constant within the volume. This concept is illustrated in Figure 2.15, which shows how
a plume consisting of layers with differing properties is collapsed into a single layer with
effective properties. This makes the calculation of emitted radiance for a monolithic plume

tractable, but introduces error.

Breaking the plume into puffs makes the problem of integration more tractable. It

is a reasonably simple matter to define bounds for each puff or slug beyond which the
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concentration is negligible; all points that are more than n standard deviations in any
direction from any puff are not in the plume. Similarly, the boundaries of the plume in any
desired area can easily be found. Then, the path a ray takes through the region of sensible

concentration around a puff or slug can be determined.

Unfortunately, the concentration along this path cannot always be easily integrated
analytically. Although the formulation for a puff is a trivariate normal distribution which
is well-behaved and seems simple, the particular concentration profile along a path through
the puff is not always simple. It is a product of two normal distributions, for the vertical
and horizontal directions, which peak at different locations. An example is shown in Figure
2.16. This figure shows the geometry for a sample skewed ray. The peak of the horizontal
Gaussian (z and y) occurs at the midpoint of the ray, but it is far from the puff in the 2
direction at this point. The peak of the vertical distribution occurs at the very end of the
ray. Figure 2.17 shows the normalized concentration through the puff. The peak is not
at the very end of the ray, highlighting the interaction between the vertical and horizontal
Gaussian terms. The resulting concentration is not Gaussian; Figure 2.17 also shows a
Gaussian curve with the same peak location and a standard deviation chosen to roughly fit
the right-hand side of the concentration curve. It can be seen that the left-hand side of the

concentration curve is higher than the Gaussian.

If all puffs were far from any other objects, it might be feasible to calculate the con-
centration at a few points, fit a Gaussian to the profile, and integrate the absorbance of the
complete puff analytically. However, in many cases, a puff will be close enough to the ground
to have substantial reflection. In these cases, the concentration profile is not always even
roughly Gaussian. Finally, analytic integration through a slug is probably not tractable.
Therefore, we resort to numerical integration. Although computationally burdensome, the

approach is more flexible and applicable to a wider range of cases.

The path a ray takes through a puff or slug can be divided into small segments, and

the concentration easily found at the segment boundaries. A simple form for the concen-
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Figure 2.16: Geometry for a Skewed Ray through a Puff
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Figure 2.17: Concentration Along the Skewed Ray through a Puff
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Figure 2.18: Calculation of Thermal Emission

tration between the points (e. g., linear or parabolic) can be assumed, and the integrated
concentration along the entire ray or any part of it can then be approximated with a high
degree of accuracy. This same method works for both puffs and slugs, and it is also usable
for integrating through only a portion of the plume, as is necessary when calculating plume
emission or when the target is within the plume.

Self-emission in the plume is calculated by assuming that each step along the path is
a homogeneous layer. Then, as shown in Figure 2.18, the emissive contribution of each
layer is calculated as the expected radiance for a given temperature and emissivity that is
not subsequently absorbed by a later layer. The emissivity of each layer is a function of
the particle concentration in the layer (C), which we have determined from our model, the
absorption cross-section of the chemical species (), which is known from experiment, and

the thickness of the layer (2), which can be set in our algorithm.
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2.5 Roof Vent Modeling

As mentioned in the Introduction, a primary motivation for our study of roof vents
is their impact on their surroundings. Given a concentration model for a particular case,
direct observation of vent gas may be simulated using the same algorithms as used for factory
stacks. Our emphasis in this section is on indirect observation, specifically the heating of
horizontal plane surfaces such as roofs or the ground by nearby heated discharges. (Although
we speak of “roof vents,” our method is applicable to other discharges onto the ground or

any other horizontal surface.)

2.5.1 Roof Vent Types

We consider three types of vent structures: transverse vents, axial vents, and downward

vents. A conceptual diagram of the three types is shown in Figure 2.19.

Transverse vents discharge upwardly and perpendicularly, or nearly so, to the freestream
wind. They are thus, in some ways, simply smaller versions of factory stacks, and anal-
ysis methods similar to those used for larger stacks are available. Axial vents discharge
horizontally in the direction of the freestream wind. Although these vents are likely not
as common as other types, the existence of a closed-form solution to the flowfield allows
for easy simulation of this type of vent. Downward vents, as the name suggests, discharge
downward onto the roof; the jet is deflected by the freestream wind and the roof itself. To
our knowledge, no theory satisfactorily models the temperature and flow in such a case.
Thus, we resort to a Computational Fluid Dynamics (CFD) solution.

Other vent geometry types are certainly possible; horizontal jets discharging in direc-
tions other than the freestream wind are an example. For some cases theoretical solutions
may be available, which could be implemented in a manner similar to our axial jet model.
Other flows are practically solvable only by CFD; these could be modeled using the tech-

niques we use for downward vents.
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Figure 2.19: Conceptual Illustration of Vent Types: Transverse (top), Axial (middle) and
Downward (bottom)

63



’ o~ Verticat
Eonstradant: \, Centertina Y Consentration
Eauivalent % # Srfie
Point |\ 3
Foof Sotsce % . N
Recirculatiss y I@z
; 2, Boof Concentration
Uy
it -
> X
' ,

b
T, Total Eshaust Volums Flow Bete
m Contamingst Mass Flow Rate

P S ST T LTSS /;.’/iQY/,-:///.e//‘r‘//:/.f‘/ﬂ“//ﬁ‘//ﬂf’/?;‘.%c//r’//jfv)’//frf//,\'.r’/:/,'w;//(x//,’v}’/./f//,.{r//,-jfﬁ*//

Figure 2.20: Schematic of Roof Vent Flow (from Wilson (1979))

2.5.2 Transverse Vent Geometry

The most basic configuration for a roof stack is shown in Figure 2.20. At the leading
edge of the building, air rising up over the top creates a recirculation region; air in this
region is very turbulent, and any effluents penetrating this area would become uniformly
mixed. Estimates of the length of this region have been published (Wilson, 1979). For
the most part, the size of this cavity is of secondary importance, as most stacks will be
outside of the region in accordance with the recommended practice of the American Society
of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE). With the exception
of the recirculation region, the geometry of the factory stack is very similar to that of a
stack rising from ground level. As a result, very similar models are applicable. However,

some modifications may be appropriate due to nonlinear scaling factors.

2.5.3 Transverse Vent Rise Calculations

Rooftop vent plumes have a higher relative level of turbulence than factory plumes.
First, because the vent plumes are smaller, the scale of the ambient turbulence is larger

relative to the plume than it is for larger factory plumes. Second, factory plumes are usually
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emitted from tall, relatively isolated stacks, while rooftop vents are typically not tall enough
to completely penetrate the turbulence typically found on roofs, which is due to flow around
the building, corners on penthouses, etc. Because of this different environment, changes to

the empirical rise equations should be entertained.

One type of modification to the equations is to change the various entrainment ()
coefficients slightly. Several such changes are recommended in Wilson and Winkel (1982).
For buoyancy rise, the alternate formulation is identical to Equation 2.17 except that §; =
0.93 for high turbulence areas; the source for this change is listed as Briggs (1975), but
it is not clear that that source directly suggests this change. The changes for momentum
rise suggested by Wilson and Winkel (1982) are not clear. It appears that there may be
typographic errors in the formulas as published, so that the exact changes being suggested
are not clear. Furthermore, it appears that the source assumes constant (§; instead of

Bi=4+4%

2, which simplifies later calculations specific to the paper. Our best guess for

the change suggested for momentum plumes is a change from §; = 0.6 (i. e., the same as
f for buoyant plumes) to 8; = 0.66. Since there appear to be inconsistencies between the
modifications in Wilson and Winkel (1982) and their cited source, Briggs (1975), we chose

not to implement Wilson’s suggestions.

Halitsky (1966) suggests the use of any appropriate rise estimate that is available; as
with factory plumes, the calculation of rise is independent from the calculation of dispersion
(other than that a plume height from some method is needed to calculate dispersion). For
buoyant plumes Halitsky (1989) suggests a formula from Briggs (1989). He also suggests a
relationship by Shandorov (also cited in Abramovich (1963)) that is useful for momentum-
only jets (i. e., jets that are at the same temperature as the ambient air) that allows for
variation in discharge angle. Although convenient, this relationship is not useful to us
since we are interested in discharges which heat their surround and are thus at elevated

temperature.

In the absence of a theory tailored specifically to buoyant transverse vents, we use the
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same rise calculation methods that are used in CALPUFF for factory stacks. As these
relations include momentum effects and stack size factors, it is not obviously unreasonable

to apply them to roof vents.

2.5.4 Transverse Vent Dispersion Calculations

Alternate methods for determining dispersion near buildings have also been suggested.
Using the statistical theory of turbulence, a power law relation can be found for the local
vertical dispersion coefficient (Wilson and Winkel, 1982).

An effort to fully study velocity and temperature profiles was begun in the late 1960’s,
but was cancelled before a model could be developed (Halitksy, 1970). According to the
principal investigator of that effort, no further work in the area has been undertaken (Hal-
itsky, 2000). However, Halitsky (1966, 1989) has proposed a simple model. He suggests
matching a classic Pasquill plume in the far field to an empirically-defined jet region near
the stack. In the jet region the plume has significant velocity, which decays to the freestream
in the far field. This velocity decay is very rapid; it occurs over a distance of a few stack
diameters. As the plume is rising rapidly in this zone, the jet region does not impinge upon
the roof in ordinary circumstances; thus, in using this method, we are concerned only with
the plume behavior in the fully-entrained region.

Halitsky empirically suggests that the fully-developed region develops at a downwind

distance of

zg = (—10.66 + 11.07m*™) ry (2.42)

where m = wg/ug, wy is the stack emission velocity, ug is the freestream wind velocity near
the stack exit, and 7y is the radius of the plume at the stack exit, which is set equal to the
stack radius and has a constant concentration.

The assumed concentration distribution is shown in Figure 2.21. From the stack exit to
some small distance downstream the concentration distribution is assumed to be trapezoidal

changing to triangular. The characteristics of this region are not of particular interest for
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Figure 2.21: Assumed Plume Behavior for Transverse Jets (from Halitsky (1989))
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SIG applications as the jet region is only on the order of a few stack diameters in length
and the effluent is moving away from the roof or ground in the region.

The width of the triangle grows until station x5, where it is matched to the simple
Gaussian far-field plume. By this point, the plume has somewhat leveled out, and subse-
quent dispersion may bring it in contact with the roof or ground. At this station, the jet

region has a triangular concentration distribution with a radius given by
ro = (—2.03 +4.44m%™") 1y (2.43)

The jet region is matched to the Gaussian plume by setting oo = 0.4r;. This matching
criterion, we note, alleviates the blooming problems associated with classic Pasquill plumes.
Figure 2.22 shows Halitky’s suggested parameterization of Turner’s fits to Pasquill’s

stability curves. The horizontal dispersion curves are generated by the single relation
oy = 0.66%08Te=30) (5 _ £,)092 4 5, (2.44)

where z is the downwind distance in feet, T,, is a stability parameter chosen as shown in
Figure 2.22, and the resulting dispersion is in feet. (Halitsky (1989) uses T (as in Figure 2.22)
for his stability parameter, which we modify to 7, to avoid confusion with temperature.)

The vertical dispersion curves are similarly generated by
0, = 0.82e%08To=30) (7 _ 5,,)080 4 5, (2.45)

The horizontal dispersion is represented quite well by the single relation.” The vertical
dispersion is not matched as well for unstable conditions; the parameter 7T, is chosen so
that the curves fit fairly well at a downwind distance of around 630 ft. Although Turner’s
fits match Pasquill’s data better, Halitsky’s approach has the benefit of being a function of
a continuous stability parameter. This is helpful as the conditions in urban environments
may not fit neatly in to the traditional six-level stability scheme; as appropriate, the sta-

bility parameter H can be varied to produce conditions intermediate between two stability

categories.
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Figure 2.22: Dispersion Curves for Transverse Jets (from Halitsky (1989))
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Plume rise for this type of jet plume can be calculated using any rise equation that

includes a momentum or velocity factor. Thus, our existing rise equations (Equations 2.17,

2.18 and 2.20) are applicable.
Once the plume rise and dispersion are calculated, the concentration at a point (z, y, z)

can be calculated from Equation 2.3. Alternatively, the dilution can be directly calculated

20,0 y? (z - h)? (z— h)? !
D="L=Z — —— |+ —_ .
1"3 exp (2 5) [exp( 592 exp 502 (2.46)

Practically, simple transverse jets are not significant for SIG applications. As was seen

as

in Subsection 2.1.5, buoyancy rise dominates momentum rise even for small differences in
temperature between the ambient air and the effluent. The rise is generally sufficient to en-
sure that the efluent only comes into contact with the ground or roof very far downstream,
by which time it has cooled. Conversely, in momentum-dominated jets the effluent impinges
on the ground more quickly, but there is no heating effect. Only in the case of impinge-
ment on nearby vertical surfaces do transverse jets cause significant convective heating, but
Halitsky’s model is not valid in these circumstances.

Nevertheless, because of its simplicity, we have described and implemented Halitsky’s
transverse jet model as an example of a simple user-written plume model. With some work,
a more involved code could be developed to generated a puff-based plume using Halitsky’s
dispersion relations, which might then be more accurate than CALPUFF for modeling the
direct observation of transverse jet plumes.

Likewise, the radiative heating effect of transverse jets when near roofs is very small.
As the effluent often consists mostly of air and thus has low emissivity in most wavelengths
with few clear spectral features, very little energy is radiated from the plume. That energy
which is radiated tends to be reabsorbed quickly.

Radiative emission by stacks themselves, on the other hand, is significant. The stack
will have a much larger emissivity than the emitted gas and thus will radiate far more energy.

As with the ground warmed by a stack or any other warm object, this may be sensed,
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typically in the long-wave infrared. As Halitsky’s model does not deal with calculation of

the temperature of the stack, the temperature must be specified separately in DIRSIG.

2.5.5 Axial Jets

Flows from axial jets have been examined by Abramovich (1963). For jets constrained
by a wall, theory has been developed only for iso-thermal jets; although we err to some
degree by doing so, we neglect the effect of temperature on such flows. In reality, the
fact that the flow is heated will tend to cause it to disperse upward more rapidly than an
iso-thermal jet due to buoyancy rise. Furthermore, the theory is developed for rectangular
jets, which have the same height across a wide range of crosswind stations; we ignore this
and use the theory for both round and rectangular vents. We have not quantified the error
introduced by using the theory for conditions other than those for which it was developed.
Such a study could be made by comparing the theoretical results to CFD results for a range
of geometries. Despite these limitations, the theory produces results that are not obviously
un-physical, and we thus retain the technique as an example of a simple user-written plume
model that has some usefulness in SIG applications.

Because the flows are fast-moving (so that they have high Reynolds numbers), jet
flows can be analyzed using boundary layer theory. Thus, a great deal of work originally
conducted for aeronautical research is applicable here. Boundary layer theory breaks a flow
down into two regions. In the outer layer, viscosity is assumed to be negligible, and classical
fluid mechanics can be used to analyze the flow. Near a body, viscous forces and momentum
forces are of the same order; this area is the boundary layer. A classic reference on fluid

flow and boundary layer theory is Schlichting (1979).

2.5.6 Axial Jet Geometry

Figure 2.23 shows the geometry of a turbulent jet (emitted at point O’) interacting with

a plate (coincident with the z axis). The jet velocity, ug, is greater than the freestream
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Figure 2.23: Geometry of Turbulent Jet Constrained by Plate (from Abramovich (1963))

velocity, ug. In the first region, from z = 0 to = =g, the jet boundary has not yet reached
and interacted with the boundary layer of the plate. In this region, it is assumed outside
the boundary layer that air is mixing into the jet in the same way it would if the wall was
not there. It is assumed that the velocity outside the boundary layer but within the jet
is ug (which is somewhat counterintuitive; ug would seem more appropriate). Within the
boundary layer, a typical velocity profile for a turbulent boundary layer is assumed. This

region is not really important for our purposes since the jet has no interaction with the

wall.

The region from z = zyg to £ = zy is known as the transition region. By the end
of this region, the potential core of the jet, the region in the center where the pressure is

constant, has disappeared. The transition region is difficult to characterize, and is often
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assumed to be of zero length.

The so-called main region of the jet begins at z = zy. (This point is shown in the
figure; the subscript looks a bit odd because it is actually a Cyrillic “P” rather than a II.)
At this point, the velocity just outside the boundary layer is still ug, as it was in the initial
region. Beyond this point, this velocity, u.,, begins decreasing until it finally reaches uy

far downstream.

2.5.7 Theory of Axial Turbulent Jets

The theory for this case (Abramovich, 1963) assumes a velocity profile in the boundary

layer of

=2 = (%)I/ ! (2.47)

where u is the velocity at a given height above the plate, u,, is the velocity just outside the
boundary layer, y is the height above the plate, and § is the thickness of the boundary layer.
A plot of this profile is shown in Figure 2.24. Close to the surface, the velocity increases very
rapidly to a large fraction of the freestream value. This profile is often used in aerodynamic
calculations because it is a reasonable representation of the profile in a turbulent boundary
layer except in a very thin skin adjacent to the body (the viscous sublayer). The profile does
not accurately model the viscous sublayer; the quantity du/dy goes to infinity at y = 0. As
the shear stress on the plate is proportional to this quantity, this velocity profile predicts
infinite shear stress on the wall, which is clearly not realistic. Outside of the boundary
layer, the theory assumes a velocity distribution identical to that in an unconstrained jet.
By assuming that the upper edge of the jet expands as it would in the absence of the wall,
and conserving momentum in the flow, the velocity at the edge of the boundary layer (u,,)
can be found. The procedure is outlined in Appendix D.

A sample result using this algorithm is shown in Figure 2.25; this figure shows one of
the series found in Figure 11.6 in Abramovich (1963), except that an approximation made

in Abramovich is not made here. The ordinate shows downwind distance, while the abscissa
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Figure 2.25: Velocity Ratio vs. Downwind Distance for Axial Jet

gives the ratio of the freestream velocity to the jet velocity (i. e., the ratio is less than one
since the freestream is slower than the jet, and it increases as the jet becomes entrained in

the freestream).

As seen in Figure 2.23, the theory assumes that the jet is emitted at the beginning of
the plate. In reality, the boundary layer will already have a finite thickness by the time it
reaches the vent and so will be thicker than predicted by this formula. However, since the
boundary layer is actually relatively thin, the method still provides a reasonable estimate of
the velocity at the edge of the layer however thick it might actually be. Since this estimate

is the only product of the method we are using, the issue is not terribly significant.

Figure 2.26 compares the results of Halitsky’s theory to Abramovich’s theory. In the
figure, Z = /by where by is the initial vent height for the axial vent and the initial stack
height for the transverse jet; thus, the two series are not strictly the same measure, but are

comparable nondimensional measures. m is the jet velocity ratio, defined as the velocity
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Figure 2.26: Velocity Ratio vs. Downwind Distance for Axial (Abramovich) and Transverse
(Halitsky) Jets

of the jet freestream divided by the velocity of the jet. The most obvious feature of this
plot is that Halitsky’s theory postulates that the jet velocity decreases very rapidly to the
freestream velocity. This phenomenon is consistent with the observation that plumes reach
their final height within 10-30 stack diameters (Wilson, 1977); when the plume levels out,

its initial momentum excess must have been dissipated.

2.5.8 Velocity and Temperature for Axial Jets

As Abramovich’s theory is derived in two dimensions and for iso-thermal jets, there is
no lateral velocity decay effect or temperature calculation intrinsic to the theory. However,
basic jet theory provides methods for approximating velocity. Just as concentration and
temperature follow similar profiles in factory plumes, there is some similarity in velocity

and temperature profiles in jets, as shown in Figure 2.27 (Halitsky, 1966). Thus, it is logical
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that there should be some similarity in form between concentration and velocity. Therefore,
without validation, we assume that horizontal dispersion can be adequately characterized
by Equation 2.44 for some value of the parameter T,, (which may or may not be close to
one of Halitsky’s suggested T}, values for any stability class), and with z2 = 0. We use the
calculated dispersion to attenuate the centerline velocity as calculated from Abramovich

theory:

2

—az
u(y) = umexp ¥ (2.48)

where u,, is the centerline velocity from theory and y is the distance from the jet centerline
to the point of interest in the direction perpendicular to the centerline.
Once the velocity is found in this manner, we assume that the velocity and the tem-

perature dilute in the same manner; thus,

To—Tu _ uwy—ug

T—TH - Uu—uyg (249)

where the 0 subscripts denote conditions at the vent exit and the H subscripts denote
ambient conditions. From this equation, T' at a given point can be found.

This technique produces a teardrop-shaped warm spot on the ground, which is qual-
itatively correct. An example is shown in Figure 2.28. In the initial region the centerline
temperature is unchanged; thus, the hot area grows as o, increases. Once the main region
is reached the centerline temperature begins decreasing. This causes the hottest portion of
the core to begin shrinking, although the portion that is warmed above ambient continues
to expand, becoming more dilute with distance. (A linear feature of different material cuts

across the scene and thus has a slightly different surface temperature.)
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2.5.9 Downward Vents—Foundations of Turbulent Fluid Motion

As there is no satisfactory theory for downward-discharging vents and other complex
fluid motion, we must obtain solutions for these cases from Computation Fluid Dynamics
(CFD). An in-depth treatment of the theory of turbulent flow is far beyond the scope of
this work; an excellent book on the subject is Wilcox (1994). Any user who wishes to run
new CFD geometries is urged to consult this book and others. The brief description that
follows is intended for those who are content to use the CFD solutions we have run as-is.

The fundamental equations describing fluid flow are the continuity and Navier-Stokes
equations. For incompressible, turbulent flow, the continuity equation, which ensures con-

servation of mass, is

oU;
=0 2.50
i (2.50)
The Navier-Stokes equations, which, for turbulent flow, characterize the average fluid
flow, are
oU; oU; oP 0
Tl pU et = — o (2uSii + Ty 2.51
P 1P i 5a; bz, + axj( 155 + 7ij) (2.51)

Note that this equation gives properties that are averaged over some time; turbulence is
a chaotic phenomenon, and calculation of exact properties is not possible and would not
be particularly relevant, as miniscule changes in initial and boundary conditions cause the
specific details of a flow to change dramatically.

For those not familiar with the notation, Equations 2.50 and 2.51 are written in Ein-
steinian notation; in this scheme, often used by fluid dynamicists, any index that is repeated
within a term (as j is in the second term of Equation 2.51) implies summation over that
index. Any index that is not repeated is a free index, which is not summed, but which takes
different values in different instances of the equations. Thus, for two dimensional flow, there
are two Navier-Stokes equations; one is for the z-velocity U1 = u, and the other for the
y-velocity Us = v. The other variables in the equations are the spatial variables £; = z and

z2 =y, the pressure P, the viscosity yu, the stress tensor S;;, and the Reynolds tensor 7;;.
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Except for the addition of 7;;, the Reynolds-averaged turbulent Navier-Stokes equations
are identical to the laminar equations. The Reynolds tensor characterizes the eddy viscosity
of the flow. Just as molecules resist sliding across one another and produce a stress opposing
the relative motion, larger eddies ranging in size from a few molecules to macroscopic pockets

also resist relative motion. This effectively increases the viscosity of the fluid.

An entire branch of the study of fluid flow is devoted to modeling the Reynolds tensor.
Within the past few years, it has become conceivable to simulate the flow on a molecular
level. Such methods are not, however, well-developed except for very basic flow configura-
tions. Thus, the empirical methods developed since the 1930s are used for more complex
flows. Two models well-suited to downward vent flow are the k£ — e and k£ —w models. These
two models are the most popular turbulence models in wide use. The details of the meth-
ods, and several others, are given in Wilcox (1994), an excellent reference on computational

modeling of turbulence.

The Reynolds tensor is related to the kinetic energy contained in the turbulence (k)
and the dissipation of turbulence (¢ or w) through a system of coupled partial differential
equations. The dissipation is expressed either directly (¢) or as dissipation per time (w). The
two are related, as € ~ wk and knowledge of either along with knowledge of k is equivalent
to knowledge of the average length scale of turbulent fluctuations in a neighborhood. Which
form is found first is a function of which model is used. In general, the & — ¢ model is less
sensitive to inaccuracies in the estimates of k and ¢ at the flow boundaries, but does not
perform well in cases where the flow separates from surfaces. In these cases, which would
be found, for example, if the wind flow around buildings or over buildings were calculate,

the k — w model is preferred. Forms of both models are available in the WIND CFD code

that we have chosen.

It is pointed out very strongly in Wilcox (1994) that, although the equations behave
somewhat like the actual production and dissipation of turbulence at the molecular level do,

the constants are strictly empirical, and the equations are only conceptually representative
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of the actual processes. As with Briggs’ macro-scale plume rise calculations, the extra
equations close the problem so that it is no longer underconstrained. It is often necessary
to tweak the constants for improved correlation with experiment, and coefficients are often
optimized for a particular flow problem. (It is largely for this reason that we have not
considered using CFD techniques for factory stacks—doing so would require the use of
constants tailored to the application, which may not be available for all scales of stacks.
Besides requiring enormous run times, these constants would likely not produce results
significantly better than those obtained from using traditional methods.) General-purpose
values of the coefficients are the default values used in the WIND code. As WIND is
oriented toward aerodynmamic simulation, the constants are most reasonable when there is
a dominant freestream airflow with perturbations caused by objects in the flow as with
downward pointing jets (provided the mass of injected air is small compared to the mass
of the freestream air) and to wind flow around buildings (which we have not presently
considered but which is of some interest for SIG applications).

As will be discussed in more detail in Subsection 3.3.3 and Appendix F, we have
implemented a method for extracting results from WIND and using them with DIRSIG’s

thermal model to predict temperatures within vent flows.
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Chapter 3

Research Approach

The theory outlined in the previous chapter describes how factory stacks and roof vents

can be modeled. In this chapter, the problem flow is broken down into basic units.

3.1 Generic Plume Interface (GPI) Outline

All of the models implemented in our research communicate with DIRSIG using a
Generic Plume Interface (GPI). This interface, as shown by the four example clients that
will be described in the following sections, enables diverse models to communicate with
DIRSIG using a simple and generic protocol. The four GPIs to be discussed are shown in
Figure 3.1. On the left is the CALPUFF model, used primarily for large stacks. On the
right are the three “vent” models: the Halitsky model for transverse vents, the Abramovich

model] for axial vents, and the CFD model for downward or other arbitrary vents.

3.1.1 Overall GPI Flow

DIRSIG communicates with a GPI at three steps of the image generation process:

initialization, ray tracing, and exit. The overall sequence is shown in Figure 3.2.
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Figure 3.1: Schematic of Four Types of GPI Clients
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Initialization

Before rendering, DIRSIG reads its configuration file and starts the appropriate GPI

This flow is shown in Figure 3.3.
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clients. Generally, the first task of the client is to read the DIRSIG release file, which con-
tains stack or vent geometry, location, release parameters, etc. Although this is technically
the job of the user-written client, a standardized function for reading the file is available,
and the contents of the structure filled as the file is read are intended to be generic. Because
it is standardized, we conceptually portray the release structure as being provided to the
client by DIRSIG. After receiving the default release parameters, the initialization module
performs any other tasks that may be necessary including reading of model-specific input

files and calculation of parameters that do not change as a function of time or location.




Ray Tracing

After initialization of the plume model and other DIRSIG initialization tasks, DIRSIG
begins rendering the image. The GPI modules accept information about each ray being
traced and report the influence of the plume on the ray. Two types of interaction are cur-
rently implemented. Effects that are dependent on both the beginning and end of the ray
are queried using a gpi_path request. Point effects are queried using a gpi_point request.
Currently, path queries are used for factory stacks since the plumes absorb and emit con-
tinuously along paths of interest. Point queries are currently used for roof vents, for which
the effect on a surface is independent of the path length or angle. Although our existing
models calculate responses for only path or only point queries and return null responses for

the other, both could be used meaningfully in the same model.

Exit

GPI models continuously wait for commands in the background following initialization.
Thus, the variables and structures used in rendering are maintained in memory, making
ray tracing more efficient. Thus, when DIRSIG is finished rendering the image, the GPI
clients must be explicitly shut down. Under normal circumstances DIRSIG automatically
performs this task, but clients occasionally remain running if DIRSIG encounters problems

and terminates abnormally.

3.2 Factory Plume Modeling—CALPUFF GPI Client

The first, and most important, area of this research is the modeling of factory plumes.
The modeling process consists of two parts. In the first part, overall data about the scene
is provided by DIRSIG to the GPI. This initialization results in an array of puff locations,
indexed by time and species, which is then used in ray tracing. As DIRSIG renders the

scene, the geometry of each ray is passed to the plume interface, which traces it through
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the puff field and returns a series of concentrations and temperatures along the plume.

3.2.1 CALPUFF gpi_init Flow

For the CALPUFF GPI client, much of the plume modeling work is done at initial-
ization. The routine receives from DIRSIG two structures containing problem parameters.
The first, a GPI.LRELEASE_INFO structure, is intended to be generic across all GPI client
types and is mostly filled by the GPI prior to initialization of the CALPUFF client. The
second, a CALPUFF-specific structure of type CALPUFF_INFO, is filled by gpi_init and
contains the data that will later be required as rays are traced.

At present, CALPUFF (probably preceded by CALMET) must be run prior to exe-
cution of DIRSIG. The client expects to find a debug.dat file in the directory from which
DIRSIG is run.

The basic flow through the client is shown in Figure 3.4. The AR models used for wind
modeling are discussed shortly in Subsection 3.2.3. The portions of the MIND algorithm
discussed in Subsection 2.2.5 are used to smooth the wind and calculate the instantaneous
diffusion. The time-varying smoothed wind is used to perturb the puff locations calculated
by CALPUFF. The rise for each puff is calculated as a function of chemical species.

At completion of the gpi-init procedure, the CALPUFF_INFO structure is filled with
the properties (location, mass, chemical species) of all puffs for the entire sequence of times

of interest.

3.2.2 CALPUFF gpi_path Flow

As rays are traced, the GPI passes information on each ray to the GPI client, where
it is processed by the gpi_path routine. As shown in Figure 3.5, the routine finds the point
of closest approach along the ray to each puff (for the time at which the ray is traced).
It then determines whether each puff is significant and determines the overall portion of

the ray which interacts with significant puffs. It then steps along this segment of the ray,
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Figure 3.4: Problem Initialization Flow for CALPUFF GPI Client

calculating temperatures and concentrations at each step. The methods for these steps are
discussed in this subsection. The results of the tracing are returned in a structure of type
GPI.PATH REPLY.

After receiving the reply, DIRSIG calculates the overall transmission and thermal emis-

sion for the path.

Point of Closest Approach

A distance of closest approach is calculated between the ray and each puff. The line

segment connecting the two ends of the ray, (z1,y1,21) and (2,92, 22) is parameterized as

T =11+ s(z2 — x1)
y=y1+sy2—y1) (3.1)
z =121+ 8(23 — 21)

where 0 < s < 1.

The squared distance from the arbitrary point (z, y, z) to the center of a puff (z;, yp, 2p)
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is then

d® = (z1+s(x2 —21) — 2,)° + (1 + (v — 1) — )’ + (1 + 82— 21) — )2 (32)

Differentiating d? and setting it equal to zero gives

il%dd';_) = 2{ [(-751 _ﬂ'}p) +S(.’172 -—:1;1)](.7;2 _ 11,'1)+

((y1 — yp) + s(v2 — y1)}(y2 — 1)+ (3.3)
[(z1 — 2p) + (22 — 21)](z2 = 21) } =0

so that the parameter at the point of closest approach is

_m—mp)(ma —21) + (1 —yp) W2 —91) + (21 — %) (22 — 1)

S =
(T2 —21)2 + (y2 — 1) + (22 — 21)?

(3.4)

from which the location of closest approach and distance at closest approach can be found
via Equations 3.1 and 3.2.

To determine whether a puff is optically significant for a given ray, we compare the
distance of closest approach to the size of the puff. If d > 4.0 max(o,,0,), we neglect the
puff. An example is shown in Figure 3.6, where the puffs in dark gray are those within four

standard deviations of the ray.

Segmenting of Ray Path

Next, the region of the ray which does not interact with any puffs is excluded; this pro-
cess is shown in Figure 3.7. The distances from the puffs to the ray are greatly exaggerated.

The values of s at closest approach to each significant puff are sorted. The smallest s
represents the first puff encountered by the ray, and the largest s represents the last puff. A
length 4.00m4z, Where 0,7 is the largest sigma for any puff in either the y or z directions,
is subtracted from the smallest s value and added to the largest s value. This gives the
segment of the ray that interacts significantly with any puff. These limits have been chosen
based on simple test cases so that the reported concentrations have a few, but not too many,

points with nearly zero concentration on either end. Also, it is pointed out that, as currently
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Figure 3.6: Identification of Significant Puffs for a Ray
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Figure 3.7: Segmentation of Ray
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implemented, the region of “significant” concentration spans from the first entrance into
the plume to the last exit. Therefore, if a ray interacts with a plume twice or with multiple

plumes, large regions with zero concentration will be reported between the interactions.

Calculation of Concentration and Temperature

This region is then segmented into a number of intervals. A variety of strategies are
available for choosing the intervals. We have chosen to space the points evenly with a
spacing of approximately 5 cm each, but with a maximum of 1024 points. Although we
have chosen an even spacing, the GPI is capable of reporting uneven intervals and DIRSIG
is capable of using them.

Given each of the evenly-spaced s values, (z,y, z) values are found using Equation 3.3.

The concentration at each point is then given by

C = f: C; (3.5)
=0

where the C; for each puff are given by

g [_%} o _(y—(;;% ©6)
with
exp [_W} + exp -_ [Q_h:_;‘;{____fgi_)]_z] N 5
exp [_W} +exp i_@_‘ﬁ%_g___‘l;zm)ﬁ] }

(Note that Equations 3.6 and 3.7 are functionally identical to Equations 2.26 and 2.28.)

Once the concentration at each point is known, the temperature at each point is easily

calculated using Equation 2.14, since the concentration at stack exit, ambient temperature,

and stack gas temperature are known.
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3.2.3 Development of Wind Models

As discussed in Section 2.3, an AutoRegressive Integrating Moving Average (ARIMA)
model is used to characterize the wind process. The procedure developed for this partic-
ular application is a combination of advice from Box and Jenkins (1976), Bowerman and
O’Connell (1987), and Wood (2000).

Two statistics packages were used to develop the models. The first, Minitab, is a
Windows-based general statistics program that specializes in interactive development of
models. The second, R (R Development Core Team, 2001), is a data manipulation language
(based on another data language known as S) for which many statistics libraries, including
time series analysis, have been built. Although it includes a command console feature,
jits main strength is in its ability to do batch processing of data. The R system and the
“tseries” library are Free Software (published under the GNU Public License) and are thus

available to all.

Dataset st712c

The first example developed here is a dataset known as “st712¢” in O’Neill (1996b) and
“3712¢” in Peterson et al. (1999). The dataset contains 50 minutes of data at 1 Hz (3000
points). The stability class for the data is estimated as class C (O’Neill, 1996b) (Peterson
et al. (1999) lists it as class D, but, according to Environmental Protection Agency (2000),
which outlines the method used to estimate the class, it should be class C). They were
acquired on July 12, 1996 at Galen, Montana. First, a time series plot of the data is
analyzed. The speed and direction are shown in Figures 3.8 and 3.9. The speeds are
reported in meters per second and the directions in degrees with 360 deg added to all
directions from north to east (0 to 90 deg).

The two plots show the recorded speed (in m/s) and direction (from which the wind
blows, in deg) for the entire 50 min data set. For the direction, 360 deg has been added

to all winds in the range 0 to 90 deg, to allow directions in the northwest quadrant to be
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Figure 3.9: Direction History for Dataset st712c

96




easily subtracted from directions in the northeast quadrant. At first glance, there is no
obvious deterministic trend to the data. There are some gradual fluctuations that might
require differencing, but, without a physical reason for these fluctuations, they are best left

unmodeled for the time being.

First, the ACF and PACF for the direction data are calculated. The direction is
analyzed first because the MIND model primarily uses the wind direction in modeling

meander. The ACF and PACF are shown in Figures 3.2.3 and 3.10.

The vertical bars show the ACF and PACF at each lag. The dashed lines running
horizontally represent confidence limits for the lags; in this case, spikes that pass through
the lines are statistically significant with 95% confidence. At the bottom of each figure are

lists of the calculated values and T statistics at each lag.

Two significant observations are apparent from the graphs. First, the ACF appears to
die down, while the PACF seems to cut-off very quickly. This hints that the wind direction
process is predominantly autoregressive. Second, the ACF dies down extremely slowly; it
is significant at all lags shown on the chart. Naively modeling the raw data would require
a very high-order model with an increased computational burden; such a model would
also tend to fit itself to any noise or random characteristics of this particular dataset and
would not be a good model for slightly perturbed conditions. A solution to this problem,
suggested by Dr. Hubert Wood of the Center for Quality and Applied Statistics at the
Rochester Institute of Technology, is to average the data to reduce the sampling frequency.
By doing this, we seek to find a sampling frequency of the same order as the frequency at
which the quantity being measured actually changes. An alternative technique would be
to retain one data point, drop several, retain one, etc., but this might tend to accentuate

noise in the instrument.

Figures 3.2.3 and 3.12 show the reduced data sets after averaging for periods of 10 and
30 seconds, respectively. With 10 second averaging, the time series still has most of its

character. With 30 second averaging, it seems at first glance that significant structure has
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Figure 3.11: Partial Autocorrelation Function (PACF) for Wind Direction in Dataset st712c
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been lost to the averaging.

The ACFs for the two cases are shown in Figures 3.14 and 3.15. With 10 second
averaging, the ACF is significant out to 11 lags; with 30 second averaging, it is significant

only out to 3 lags. Either qualifies as dying out, suggesting a pure autoregressive model.

The PACFs for the two cases are shown in Figures 3.16 and 3.17. In both cases the
PACF is significant to about four lags (with a spike again at lag 12 in the case of 10
second averaging). This cutting-off behavior also indicates that the wind direction process
is autoregressive and of approximately fourth order. It is interesting that both averaging
periods yield the same order of process despite different behavior. For 10 second averaging,
all four lags are significant; for 30 second averaging, lags 2 and 3 are not significant. Thus,
increasing the averaging period from 10 to 30 seconds affects the PACF, but not the first-

order conclusion derived from it.

As the 10 second-averaged data has a manageable degree of correlation and preserves
more detail of the original data than the 30 second averaging, an autoregressive model
is developed for the 10 second averaging. Although the PACF suggests that a fourth-
order model is appropriate, we begin with a first-order model and progressively add terms,

ensuring that each additional term is statistically significant.

First, a first-order model with no constant term was tested. Minitab converged to a
model and reported parameters, but this model is deficient. When evaluating an ARIMA
model, Minitab uses it to “back forecast” the original data, or estimate earlier values based
on the last ones in the data set. In this case, the residual error between the back forecasts
and the actual data did not die out. In general, this indicates that there is a non-stationarity
in the data that has not been accounted for. Minitab also reported this error for all orders

of autoregressive models through order five that did not include a constant term.

Adding a constant term gives an acceptable AR(1) model for which the back forecasts
die out. The model is z; = 118.427 + 0.66462;_1 + a; where a; is a normal random variable.

(Note that the form of the model given by Minitab gives z; directly, including the mean,
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Figure 3.12: 10 second-averaged Wind Direction in Dataset st712c
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Figure 3.13: 30 second-averaged Wind Direction in Dataset st712c
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Figure 3.14: ACF for 10 second-averaged Wind Direction in Dataset st712c
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Figure 3.15: ACF for 30 second-averaged Wind Direction in Dataset st712c

101




Partial Autocorrelation Function for 10 Dir

c
(]
= 10
o os -
© 05 -
[ =
[ 04 -
8 02 7 L 3 soun s s caan o saan ¢ st 4t 4 ot 3 s b e s+ 2 s st
o 00 . Darh Ersouedetaner Ol whor sl whamaeet ~ v Lty T oy bt
9o o SR GUARpUpuI. i S g A S AU SR PURE g, R DN LA SR SOT. A R 2
5 02 o
< -04 -
— 0.6 -
o
= 08 o
E 1.0 -
o I T I T i I I
5 15 25 35 45 55 65
Lag PAC T Lag PAC T T Lag PAC T Lag PAC T
1086 1145 18 0.01 047 1.95 46 005 079 61 -0.04 -0.70
2 021 389 17 002 D41 0.14 47 008  1.00 62 -0.04 -0.69
3 018  3.04 18 001  0.20 0.38 48 004 0.61 63 -0.04 -0.68
4 015 256 19 001 047 -0.08 49 041 4.97 84 -0.05 -0.89
5 007 1.9 20 0.00 0.06 -0.53 50 -0.01 -0.22 85 008 135
6 002 039 21 0.06 105 0.42 51 001 -0.19 86 -0.04 -0.71
7 002 040 22 0.1 042 0.29 52 -0.08 -1.32 67 0.01 023
8 010 179 23 007 119 0.32 53 -0.02 0.42 68 004 073
9 003 050 24 007 .15 0.41 54 -0.04 0.76 69 -0.08  -1.34
10 003 053 25 005 079 1.51 55 -0.04 0.74
11 004 067 26 0.0t 0.16 0.05 56 -0.03  -0.57
12 014 243 27 0.06 097 -1.49 57 002 -0.30
13 -0.04 069 28 0.05 084 0.67 58 -0.01  0.17
14 001 023 29 0.01 0.2 0.67 59 000  0.02
15 005  0.93 3 0.1 018 153 60 006 142

Figure 3.16: PACF for 10 second-averaged Wind Direction for Dataset st712c
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Figure 3.17: PACF for 30 second-averaged Wind Direction for Dataset st712¢
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and thus differs slightly from Equation 2.34. This saves the user from having to subtract the
mean from the data to be modeled. For this case, if the mean is manually subtracted, the
coefficient for z,_1 is still 0.6646, as it should be.) For the AR(1) model, the sum-squared
error is 21651.2, giving a mean-squared error of 72.7 (for 298 degrees of freedom). The
ACF and PACF of the residuals are significant at multiple lags, indicating correlation of
the residuals and thus an unmodeled higher-order effect. The Ljung-Box statistic reported
by Minitab shows significant values at lags 12, 24, and 36; this statistic is used to determine

if unmodeled seasonal effects are present.

As the AR(1) model does not adequately explain the data, we proceed to add additional
terms. The results of each subsequent model are shown in Table 3.1. From left to right,
the columns show the order of the model, the coefficients of the model (starting with
the constant at the top, the z;_1 coefficient, the z;_2 coefficient, and so on), whether the
coefficient is statistically different from zero with 95% confidence, the sum-squared error for
the model, the mean-squared error for the model, whether there is statistically significant
correlation between the residuals, and whether the Ljung-Box test shows any statistically

significant results.

From this, we see that the AR(4) model is the correct choice. With the AR(3) model,
the Ljung-Box test still shows significant results. Also, the fact that all coefficients in the
AR(3) model are significant supports the tentative addition of another coefficient. With
the AR(4) model there is no correlation of residuals or indication of a possible unmodeled
seasonal effect. Even though the second and third coeflicients are not significant by them-
selves, the fourth coefficient is, which justifies the higher-order model. It should also be

noted that Minitab does not allow lower-order coefficients to be eliminated or forced to zero.

Tentatively adding a fifth AR coefficient, we find that none of the coefficients beyond
first order are significant in the AR(5) model (as a whole, the coefficients are significant, else
the AR(5) model would be no better than the AR(1) model, but, individually, no coefficient

“pulls its own weight”). Thus, the slight improvement of the AR(5) model does not justify
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Model
AR(1)

AR(2)

AR(3)

AR(4)

AR(5)

Table 3.1: Development of AR model for Dataset st712c

Coefficients
118.427
0.6646

92.501
0.5218
0.2163

75.8825
0.4834
0.1248
0.1769

64.2183
0.4568
0.1061
0.1051
0.1501

59.7777
0.4467
0.0989
0.0980
0.1195
0.0676

Coeff Sig?
Yes
Yes

SS Error
21651.2

20642.2

19999.5

19550.0

19461.2
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MS Error
72.7

69.5

67.6

66.3

66.2

Res Corr?
Yes

No

No

Ljung-Box Sig?
Yes

Yes

Yes




its additional complexity, and it is not parsimonious.

The best model for this data set, therefore, is
2z = 64.2183 + 0.45682;_1 + 0.10612;_9 + 0.1051z;_3 + 0.15012;_4 + a; (3.8)

where a; is a normal random variable with a standard deviation iteratively chosen so that
the standard deviation of the synthetic data is 11.37.

As a sanity check, we note that, for z;_; = z;_o = ... = 353, the mean value, then
z; = 353. The same is true of all of the other models.

After identification of the model, it is a simple matter to generate an instance of the
random process by generating a sequence of shocks and applying Equation 3.8. Figure
3.18 shows a time-series plot of the real 712¢ dataset and an AR(4) simulation. Data
through index 300 are the original dataset, and the rest are simulated. It must be noted
that Minitab cannot be used for this method of instantiation of the process. Minitab’s
prediction capabilities do not include the random effects of shocks but simply operate on
the tail end of the real data with the inclusion of upper and lower confidence intervals to
account for the likely effects of shocks.

The ACF and PACF of the simulated data are shown in Figures 3.19 and 3.20. As a
whole, the character of the functions is similar to that for the real data (Figures 3.14 and
3.16; thus, we conclude that this technique is able to realistically simulate a given dataset.

In order to restore the original sampling rate to the averaged data, the final step in the
process will be to replicate each point to restore the original rate, and a small amount of
random noise will then be added to each point.

Although the wind speed can also be modeled as an ARIMA process (requiring, per-
haps, a different averaging time or order of model), for the current method does this is
probably not necessary as the wind speeds are uncorrelated using a ten second averaging
time. Thus, we simply model the wind speed as a normal random variable with the desired

mean and standard deviation.
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Figure 3.18: Real and Simulated Direction Data for Dataset st712c

Dataset st712d

After demonstrating that a time-series model can be developed for a single experimental
data set, we analyze other data to determine what characteristics of the models are similar.
We next analyze data set st712d. The set was taken shortly after set st712c, but is class
D due to calming conditions in the evening. Any small portion of st712d looks similar to
st712c but the trends in the data as a whole are different; whereas st712c has fluctuations
of various scales about its mean, st712d seems to have a dominant periodic movement.

Although there are high-lag points at which the PACF is significant for 10, 15, and 30
second averaging, the PACF for 10-second averaging cuts off after roughly lag 5. We will
proceed with the 10-second averaging for easy comparison with the previous example. The

dataset for this case is shown in Figure 3.21, and the PACF in Figure 3.22.
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Figure 3.19: ACF for Simulated 10 second-averaged Wind Direction for Dataset st712c

Partial Autocorrelation Function for Sim 10 Dir A
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Figure 3.20: PACF for Simulated 10 second-averaged Wind Direction for Dataset st712c
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Figure 3.21: 10 second-averaged Wind Direction for Dataset st712d
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Partial Autocorrelation Function for 10 Dir
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Figure 3.22: PACF for 10 second-averaged Wind Direction for Dataset st712d

Developing an ARIMA model for this dataset is problematic. Figure 3.21 shows that
the data meander in a long-term fashion, which likely violates stationarity. Indeed, though
all coefficients are very significant for an AR(4) model, the fourth-order model also shows sig-
nificant Box-Ljung results, indicating that the non-seasonal model is inappropriate. Adding
a fifth coefficient, Minitab reports that the back forecasts do not die down, indicating that
the data are not stationary. Although the model is not adequate, simulated results are
shown in Figure 3.23 to illustrate the time-domain manifestations of these difficulties. The

actual data set runs through lag 300, followed by simulated data.

Unlike the previous dataset, there is an obvious difference between the real and simu-
lated data for this case. The real data exhibit a long-period meander that is not included
in the simulated data. The simulated data fluctuate more from one value to the next to
capture the overall spread of the actual data, but do not do so in the proper systematic

way.
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Figure 3.23: Real and Simulated Direction Data for Dataset st712d

A second model was next developed to account for the meander in this data. First, a
sinusoid was fitted to the original data and subtracted from it; the fit is shown in Figure
3.24.

The residual data were then analyzed in Minitab. The best model found was an AR(5)
model. Only the first and fifth coefficients of the model are actually significant (though
all must be retained). The Box-Ljung statistic is not significant, indicating that the non-
seasonal model is adequate. However, the correlation of the residuals is significant at low
lags; a primary cause of this is that the experimental values are predominantly higher than

the fit values at both ends, as shown in Figure 3.25.

Despite its drawbacks, this model was used to generate synthetic data, in this case of
the residual, to which the original sinusoid was added. The results of this simulation are
shown in Figure 3.26. Again, the real data run through index 300, followed by the synthetic
data. There is a slight jump at the start of the synthetic data because the starting phase

of the sinusoid that was added to the synthetic data was not matched to the ending phase
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Figure 3.24: Direction Data for Dataset st712d, with Sinusoidal Fit

of the real data.

The synthetic data meander in a manner similar to the real data, though the typical
point-to-point variation still seems a bit higher than in the real data. This is an effect of
the “smiling” residual curve; the systematic difference between the data and the sinusoid
increases the standard deviation of the difference data, but in a systematic way; when
the data are simulated, this extra difference becomes part of the random point-to-point
fluctuation.

To attempt to correct this deficiency, a third model was developed. Rather than using
a sinusoidal fit, this model uses a ten-point moving average smoothing as a fit to the data,
as shown in Figure 3.27. The difference between the value at each point and the moving
average was analyzed in Minitab.

After subtracting the moving average from the data, it was found that the residuals
(between the experimental data and the moving average) were uncorrelated. Thus, no

ARIMA model is necessary, and the dataset (at least with 10 second averaging) is adequately
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Figure 3.26: Real and Simulated Direction Data for Dataset st712d, with Sinusoidal Baseline
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Figure 3.27: Direction Data for Dataset st712d, with Moving Average Fit
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described by a baseline onto which Gaussian noise is superimposed.

For reconstruction, an appropriate baseline must be used. As the moving average
baseline from the experimental data is not easily characterized nor necessarily intrinsic to
similar data, we instead use a sinusoidal baseline obtained by fitting a sinusoid to the moving
average baseline; the resulting sinusoid (shown in Figure 3.28) differs very little from the

sinusoid fit to the actual data (Figure 3.24). The final model is given by
2; = 6.166818 sin(0.035869¢ + 0.82983) + 353.0602 + (a; + 0.264) (3.9)

where a; is Gaussian noise chosen so that the standard deviation of z; is 5.976. The Gaussian
noise also has 0.264 added to it, which is the mean of the residual between the data and
the moving average base.

The results of a simulation with this method are shown in Figure 3.29 (again, with
real data through point 300). This simulation seems to capture the characteristics of the

experimental data better than the other two models.

Dataset st712e

Finally, the third dataset from July 12, 1996 is analyzed. Taken shortly after st712d,
this set is also estimated to be stability class D. From examination of the ACFs and PACFs,
it is found that, again, 10-second averaging is appropriate. The 10-second averaged data
are shown in Figure 3.30.

At first glance, there is no overall long-term meander to this data, but there is a
temporal change in behavior. At the beginning of the dataset the direction oscillates with
a small amplitude, with a meandering centerline. After approximately 120 data points the
data begin to oscillate more, and the local centerline of the oscillation moves more randomly.

Following a trial-and-error approach, an AR model was developed for the data with-
out any prior treatment to determine whether the variations cause difficulties with model
development. An AR(4) model was found to be satisfactory. The first and fourth coeffi-

cients were significant, residuals were uncorrelated, and the Box-Ljung test did not show
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Figure 3.28: Sinusoidal Fit to Moving Average Baseline for Dataset st712d
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Figure 3.30: 10 second-averaged Wind Direction for Dataset st712e

significant results. Thus, this AR(4) model seems satisfactory for the data. The model is
2y = 56.3502 + 0.54872;_1 + 0.08072;_2 + 0.08472;_3 + 0.13212;_4 + oy (3.10)

where a; is Gaussian random noise with a standard deviation chosen so that the standard
deviation of z; is 7.67, the standard deviation of the experimental data.
Results using this model are shown in Figure 3.31. In general, the simulated data (after

point 300) matches the character of the second portion of the experimental dataset well.

3.2.4 Guidelines for Development of Additional Wind Models

We have developed models for three experimental data sets in this section. Unfortu-
nately, the final models are insufficient to allow the user to infer any rules for general model
parameters for similar data sets. We suggest two areas of focus for improving understanding

of wind behavior. First, common conditions should be studied in detail to determine typical
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Figure 3.31: Real and Simulated Direction Data for Dataset st712e

parameter values with high confidence. Second, a variety of conditions should be studied

to determine general variation of parameters with conditions.

Development of general parameters for basic conditions

A fundamental step in developing a comprehensive understanding of wind model pa-
rameters is the collection and analysis of additional wind data sets for conditions similar
to our existing data (classes C and D). Ideally, some data should be collected at high fre-
quencies (about 1 Hz). The autocorrelations of these data sets should then be analyzed to
determine a meaningful time scale at which the data sets are not overcorrelated. If this
time scale is on the order of 10 seconds, as it was for our data sets, this would be a signifi-
cant general property. Once the time scale is determined, additional data collected at the
significant frequency should be collected.

After data are collected, AR models should be developed for each data set. A simple
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procedure for doing this using the R (R Development Core Team, 2001) software is in Ap-
pendix E. Once multiple models for similar conditions are available, bounds on parameters
can be drawn. These bounds could then be used to randomly generate AR coefficients given
a set of conditions.

If available equipment is not capable of recording high frequency data, drawing general
conclusions would be more difficult. However, it would still be possible to compare whatever
new data are available to averaged values for existing high-frequency data sets. This would
hopefully allow at least a qualitative assessment of whether the existing high-frequency data

are typical for certain conditions.

Development of models for less-typical conditions

In addition to comprehensively developing parameter ranges for “benign” conditions,
models for less ideal conditions should also be developed. Eventually, these could be studied
to the same level of detail as classes C and D, but preliminary study should focus on a
collecting data for a wide sampling of conditions (time of day, insolation level, mean wind
speed, temperature, etc.). One or two models could be developed for each set of conditions.
The goal of this portion of the study would be to determine in general how models for, for
example, a gusty, unstable night compare to models for neutral nights or days in terms of
appropriate model order, significance of coefficients, and magnitude of coefficients.

It should be possible to draw some conclusions for a variety of conditions with low-

frequency wind data if high-frequency data are not available.

3.2.5 Default Model Parameters

Appendix C describes the parameters used in the CALPUFF GPI code. They are
divided into functional areas, and the names of the variables and input groups and their

units are given.
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3.3 Roof Vent Modeling

Integration of the roof vent results into DIRSIG is a bit more complex conceptually
than integration of results for transmissive/emissive plumes. Absorption and emission by
plumes are linear effects, and their impact on a ray can thus be easily superimposed with
other effects. Temperature and heat transfer effects, on the other hand, cannot simply
be simulated by superposition of effects. For example, the heating of the surround by a
plume tends to increase its temperature; the temperature increase does not change the
solar heat loading, but it changes the rates of heat transfer due to radiation and conduction
(and convection should the properties of the convecting medium change). The end result is
that, when a new heating effect is introduced, the thermodynamic equilibrium of a body is

changed in a nonlinear way.

Thus, treating heat transfer in a fully consistent manner requires a comprehensive
and expandable thermal model. As this is not available in DIRSIG, we must for the time
being use existing capabilities. In this case, we have chosen to use the existing capability
of specifying wind temperature and speed that is used to calculate convective transfer to

surfaces.

We ignore the nonlinear nature of multiple effects in two ways. First, the plume model
calculates a temperature difference between the plume and the ambient temperature at
a point. This is then added to the air temperature already calculated by the DIRSIG
thermal model. This superposition effectively can be viewed as assuming that air from
the vent does not displace existing air in any way; instead, the vent’s heat is transported
by some mediumless method, whereupon it warms the existing air without disturbing it.
We have found that the alternative, simply using the vent’s temperature as the existing
air temperature, tends to cause the thermal model’s temperature equilibrium iteration to
become unstable. Simply using the vent temperature would also tend to make the air

temperature too uniform; in reality, mixing will tend to cause the temperature to be higher
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in regions where it would be higher in isolation.

Furthermore, we have no convenient method for treating areas with heating effects
from multiple vents. We thus have chosen to allow each point of interest to be affected only

by the vent that, in isolation, would produce the highest temperature at that point.

3.3.1 Transverse Vents—Halitsky GPI Client

As discussed in Subsection 2.5.4, transverse vents are not particularly significant for
SIG applications. We have implemented Halitsky’s plume model mainly as another example
client. It might be useful to modify it to replace the CALPUFF GPI for direct sensing of
small stacks (although this re-introduces the ray tracing difficulties solved by using a puff-
based approach). The jet region of the model could be added in (we do not consider it since
heated plumes do not re-contact the roof until further downstream) and used for simulation
of a LADAR or other velocity measuring device.

The flow for this client is much simpler than for the CALPUFF GPI because there
are no plume parameters requiring or benefiting from pre-computation. The only task of
the gpi-init routine is to call the standard GPI routine to read the release file. All plume
calculations are done in the gpi_point routine as shown in Figure 3.32.

We first assume that the plume has progressed beyond the jet region, so that the wind
speed everywhere is the same as the freestream wind speed. Given a point of interest on the
roof or ground, it is then simple to calculate the downwind and crosswind locations of the
point by projecting the  and y coordinates onto the downwind and crosswind directions.
Then, the rise is calculated exactly as it is for factory stacks through Equations 2.17, 2.18,
and 2.20. The dispersions are found from Equations 2.44 and 2.45 (as shown in Figure
2.22). From these, the dilution is found from Equation 2.46; the temperature is then found
in the same manner as for factory stacks. The wind speed is also reported back to DIRSIG,
but, as we assume there is a temperature elevation on the roof only in the main region, the

wind speed returned is always the freestream wind speed.
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Figure 3.32: Point Calculation Flow for Halitsky GPI Client

3.3.2 Axial Vents—Abramovich GPI Client

The problem for axial vents is similar to that for transverse vents. Again, the gpi.init
routine only requests that the release file be read. All processing is again done in the
gpi_point routine.

The basic basic flow (Figure 3.33) is very similar to that for the halitsky_gpi client; the
differences are in the actual equations used to calculate the temperature and velocity. The
primary difference between the two procedures is that concentration is the fundamental
variable for the Halitsky model, from which temperature is derived (with no wind speed
variation), whereas centerline wind speed is the fundamental variable for the Abramovich
model, from which temperature and off-centerline properties are derived. Additionally, the
calculations for the Halitsky model are explicit, whereas the Abramovich model iterates on

wind speed until the desired downwind distance is matched.

Given a point of interest, we calculate the downwind and crosswind distances. From
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Figure 3.33: Point Calculation Flow for Abramovich GPI Client

the downwind distance, the centerline velocity is found using the procedure outlined in
Appendix D. The dispersion is calculated using Halitsky’s curve fit (Equation 2.44). With
the dispersion, we can then find the velocity at the point of interest. We assume that the
temperature dilutes in the same manner as velocity (as discussed in Subsection 2.5.8), from
which we calculate the temperature. The temperature and wind speed are reported back

to DIRSIG in the same manner as for transverse vents.

3.3.3 Downward Vents—cfd_gpi Client

Downward-discharging vents are in some ways both the most complex and simplest
case to implement in DIRSIG. The complexity arises from the need to calculate the effects
of such vents using Computation Fluid Dynamics (CFD). Before running DIRSIG, the user
must run the CFD code and extract the results. The process of running the CFD code is

involved and requires some knowledge of fluid mechanics.
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Preparing input to the CFD code requires several steps. First, the user must define in
detail the geometry of the problem including vent location, the wall boundary, and free flow
boundaries. Second, the solution volume must be discretized into a computational grid on
which flow properties are calculated. Finally, boundary conditions on the grid boundaries

are defined. These conditions simulate walls and freestream conditions.

Once the flow geometry is created, execution of the code is time consuming; run times
on the order of fifteen hours, even when the problem is executed in parallel on multiple
machines, are not uncommon. Once the code is run, the user must check the reasonableness
of the results and ensure that the solution is converged. Finally, if flow conditions are
changed, the entire process must be repeated as the solution is strictly valid only for the

input conditions.

Once the flow field has been computed, however, incorporation of the results into
DIRSIG is nearly trivial. The gpi_init reads the CFD data in to memory, where it is held
until it is needed during ray tracing. The gpi_point portion of the client simply receives a
point of interest and determines the temperature and velocity by interpolating on the CFD

solution grid.

The procedures for running the CFD solution will vary with the code used. We have
chosen to use the WIND code, developed by NASA and the U.S. Air Force. This code is
available to U.S. entities possessing export licenses, and is thus available to nearly all users
of MODTRAN and DIRSIG. An overview of the specific process used to define a problem,
run WIND, and extract the results can be found in Appendix F. This guide is not intended
to be a complete tutorial. The user should first work through the case/ example in WIND
User’s manual (NPARC Alliance, 2001). This example includes essentially the same model
generation and execution steps as our CFD model. Once the case example is understood
the procedures in Appendix F detail the specific tools and files developed for our basic roof

vent.

If the user does not wish to develop a new solution, our existing solution may be usable.
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Fortunately, the flow parameters for our downward vent are also reasonable for exhaust from
a large truck. Also, it is reasonable to scale the exhaust temperature by some small amount
from the value used in the CFD solution. The temperature at a point of interest can be

approximated by
Te — Ta

T=To+ (To —Ta)'fo—_—zﬁ‘
e a

(3.11)

where T, is the ambient temperature, T, is desired exhaust temperature, T, is the exhaust
temperature used in the CFD solution, and Tj is the temperature at the point of interest

from the CFD solution.
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Chapter 4

Results

4.1 CALPUFF Client Validation

Before using it for generation of imagery, we first validate the CALPUFF client to the
extent possible. Although we have little actual imagery to directly compare to our results,

we can compare our results to other researchers’ results and appeal to their validation.

4.1.1 Heritage from MIND Validation Results
Concentration Time Series Simulation

As discussed previously, we use two parts of the MIND algorithm. First, we smooth the
wind, using the smoothed wind direction to locate the plume centerline. Second, we use the
smoothed wind to generate instantaneous diffusions. Both of these portions of the algorithm
produce results identical to MIND when given identical inputs (experimental wind data
acquired by Dr. Peterson and her colleagues). As the MIND code itself assumes neutrally
buoyant effluent discharged at ground level, we cannot directly compare the numerical
results further. Furthermore, MIND intrinsically uses angular dispersion coefficients rather
than linear coefficients so that its concentration measurements do not match ours exactly

(although they are close, assuming the angular dispersions are small angles).
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Nevertheless, as the results tend to be very close, we appeal to some of MIND’s val-
idation results. All figures referenced in this section are from O’Neill (1996b). First, we
show observed and predicted concentrations for a location near the plume centerline for
tests st712c and st712d in Figures 4.1 and 4.2. (O’Neill (1996a) shows a similar figure for
st712e, but the plume impinged on the receptor for only a small fraction of the test due to
a shift in the mean wind direction; the period of impingement and peak concentration were
predicted quite well by MIND). Concentrations are reported in parts-per-trillion (ppt). The
receptor was located at a downwind distance of 200 m.

In general, the locations and directions of fluctuations for both observed datasets are
predicted reasonably by MIND. The relative amplitudes are not always correct, and both
predicted series have higher average concentrations level than the observed series. As the
bias is systematic, it is likely due to unmodeled effects rather than being a random error.
The data in (O’Neill, 1996b) show that the bias varies from about 0.25 to 0.7 standard

errors.

Average Concentration Simulation

The averaged MIND results (for 50 minutes) as compared to Pasquill-Gifford results
for datasets st712c, st712d, and st712e are shown in the following figures.

These results compare quite well; the st712c dataset, identified as Class C, lies quite
close to the Pasquill-Gifford Class C curve. The st712d dataset, taken just after st712c, is
tentatively identified as Class D, but is in fact something of a borderline case, occurring at
dusk. The result for st712d lies between the Class C and Class D curves. Finally, the st712e
dataset agrees very well with the Class D curve. The predicted mean concentrations tend
to be higher than the measured mean concentrations when the measurement points are well
within the plume. This is likely due to the same systematic bias as seen in the discussion
of time series comparisons in the previous subsection. As shown in O’Neill (1996b), the

predicted peak-to-mean ratios agree very well with the observed ratios; since the ratios are
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d

the same, the systematic error observed in the time sequence plots (of which an error in

peak is a consequence) is also seen in the averaged crosswind profiles (a measure of mean).

4.1.2 Near-field Time Average Validation

st712c Dataset, 70 meters Downwind

In the absence of field data, it is not possible to directly compare CALPUFF GPI results
to observed concentration time histories; however, we can compute averages and compare
these to Pasquill-Gifford curves. For our calculations, we actually trace a horizontal ray
near the plume and perpendicular to the mean wind direction once per second for a specific
length of time. The concentrations along this ray are accumulated and averaged.

As we are typically interested in imaging plumes close to the stack, we use MIND’s 200
m data as an outer bound and work inward. Beginning at a distance of 70 m, we trace across
plumes using simulated wind data for dataset 712c for averaging times of 60, 300, 600, and
1200 seconds (plotted in Figures 4.6 through 4.9). For two reasons we do not modify the
Pasquill-Gifford curves to approximate the effect of decreased averaging time, even though
CALPUFF allows for a simple power law modification. First, O’Neill (1996b) does not
make this modification; comparison between our conditions and O’Neill’s is therefore easier
if no correction is made. Second, as was stated in Hanna et al. (1982), Pasquill’s curves
should represent average dispersions over a few minutes; as our averaging times are almost
all ten minutes or shorter, we lack strong motivation to modify the default curves.

Several observations should be made about these figures. First, the curves for short
integrating times are not very Gaussian. The plume undergoes rapid motion during the
first minute for this dataset (as can be seen in the NTS video) causes the average to smear
and be flat. As the integrating time increases, a more central distribution develops—the
rapid motion tends to be averaged out.

Second, the curves for an averaging time of 1200 seconds (Figure 4.9) is very similar

to the curve for 600 seconds (Figure 4.8). This indicates that the plume essentially repeats
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Figure 4.10: Average Concentration over 600 seconds for Test st712e at 70 meters Downwind

its motion after 600 seconds, giving the same average behavior.

In general, the comparison somewhat validates the CALPUFF GPI model. The av-
eraged results, though not strictly Gaussian, have half-widths on the same order as the
proper Gaussians. We note that the area under our curves may be more than that un-
der the Pasquill-Gifford Gaussians. This is to be expected; the Pasquill curves assume

time-averaged motion in the vertical direction, which is not accounted for in our model.

st712e Dataset, 70 meters Downwind

We repeat the analysis for the st712e dataset for the same averaging times, as shown
in Figure 4.10.

Once again, the plume is off-center in relation to the mean wind direction. Again,
there is very little change between 600 and 1200 seconds. Also as before the CALPUFF

GPI average compares somewhat reasonably to the Pasquill-Gifford curves. As a whole, the

average is on the order of the classical result.
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st712c Dataset, 20 & 40 meters Downwind

As we continue to move closer to the stack, agreement between the CALPUFF GPI and
Pasquill-Gifford theory (somewhat unexpectedly) improves. We attribute this to a decrease
in vertical dispersion as predicted by Pasquill-Gifford theory and a decrease in the traverse

distance caused by an angular change in wind direction.

st712e Dataset, 20 & 40 meters Downwind

As with the st712e dataset, the agreement between Pasquill-Gifford theory and our

model results improves.
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4.1.3 Validation Summary for CALPUFF Client

Despite the absence of field data for direct comparison, we have demonstrated to some
degree the validity of the overall CALPUFF GPI model. The GPI client generates identical
dispersion data to MIND, validating that the routines perform as intended and generate
the proper values for the instantaneous theory of Dr. Peterson and her colleagues.

For moderate downwind distances (for SIG purposes), we appeal to the validation
efforts in O’Neill (1996b) to demonstrate that the technique produces concentration time
series that are similar in character to observed time series and that average concentrations
are similar to the average values predicted by Pasquill-Gifford theory.

As SIG applications tend to require modeling at extremely short downwind distances,
we have computed our own time-averaged results. These show that, as downwind distance
decreases, our method diverges from the results predicted by traditional theory. However,
we note that such short downwind distances are beyond the original scope of both the

original Pasquill curves (Pasquill, 1961) and the curve fits commonly used (Scire et al.,

1999).

4.2 Validation for Abramovich Client

We have not validated the results from the Abramovich client in any way. From the
thermal truth images obtained from DIRSIG, in fact, we suggest that the Abramovich
model is not very realistic. The hot area created by even a small vent is much larger than
common sense would lead us to suspect.

The fundamental problem with this model is that it was developed for isothermal jets,
i. e., jets of the same temperature as the ambient air. The flow in such jets is neutrally
buoyant, and thus tends to behave in a laminar fashion; this is shown conceptually in Figure
4.15. In heated jets, on the other hand, the flow will tend to rise due to buoyancy, separating

it from the roof. The thermal differences tend to induce turbulence more quickly than in
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Figure 4.16: Conceptual Flow for Axial Heated Jet

isothermal flow through the induction of local velocity gradients. The result is likely a
plume that separates from the surface and disperses more quickly than Abramovich theory

suggests; this is conceptually shown in Figure 4.16.
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Despite this severe caution, the client still serves a two-fold purpose. First, it is an
example of a relatively simple GPI client that calculates temperatures from theoretical
equations (as opposed to the CFD client, which performs only a blind interpolation); with
development of a better theory, new equations could be added to the basic skeleton of the
client.

Second, the general shape of the heated area is intuitively right. The initial region,
in which the centerline velocity does not decay, causes the plume to widen out as the
dispersion increases. In the subsequent main region, centerline decay causes the plume to
narrow, producing an overall teardrop shape (which can be seen in Figure 4.23). By scaling
the downwind distances in some manner and/or changing the dispersion relationships, the
size of the teardrop could be scaled. This could be done either based on experiment or
on a rough-order estimate. If these corrections can be applied, the speed advantage of the

Abramovich client, with its simple, on-the-fly calculations, might make it more attractive

than the CFD client.

4.3 Validation for CFD Client

As with the Abramovich client, we have performed no validation for the CFD client.
The CFD model itself is well validated as it is intended to be a government-produced
standard tool. Thus, insofar as the user correctly runs the code, checks the results, and
takes care to use proper models (e. g., turbulence models) for the particular problem, the
WIND results will be accurate.

In the case of our roof vent CFD solution, we are guilty of not strictly following our
immediately preceding advice. The final solution is not, in fact, converged. The mass flow
rate through the downstream end of the grid changes quickly at first (from the assumed
initial condition, which is uniform flow throughout the grid) and then oscillates about a
mean value, changing by about 15%. (The flow through the other grid boundaries also

varies to conserve mass.) Tightening the limits by which the flow is allowed to change each
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iteration did not damp out this oscillation. There are two likely explanations. First, the
limits may need to be tightened further to force the solution to “creep up” on the steady-
state value. Second, the proper solution may, in fact, not exhibit static stability, in which

case the result is correct for a given instant in time.

;From basic observation of the results, the solution is approximately correct. The vent
flow enters vertically and is smoothly deflected by the freestream. The downstream velocity
is higher than the freestream value due to the entrainment of the jet’s air. This is shown
in Figure 4.17. The edge of the data field nearest the observer is the centerline (symmetry)
plane of the vent. The vent blows downward, and the freestream blows from right to left.
The flow can be seen to curve as it is entrained by the freestream. Also visible is a shear

between the vent air and the freestream, which is deflected downward only slightly.

Figure 4.18 shows the two-dimensional temperature distribution on the roof for our
example simulation. The vent is a square centered at a downwind distance of three meters
with a diameter of 0.5 meters. When rendering, the distribution is reflected about the

centerline.

Figure 4.19 shows temperature contours in the vicinity of the vent. The edge of the
contour volume closest to the observer is a plane of symmetry. The bottom of the volume is
the roof. The vent, which is rectangular, is not drawn, but its position is noticeable at the
top of the volume because of the constant temperatures in its vicinity. Both the highest and
lowest temperatures are dark, while moderate temperatures are gray. (All of the hottest
temperatures are near the vent. They are surrounded by the moderate temperatures, and
the coolest temperatures are outermost.) The contour closest to the vent corresponds
essentially with the vent temperature; as there are no contours within the area immediately
under the vent, the air is at a nearly constant temperature. The asymmetric temperature

distribution due to the freestream wind is visible.

‘We note that the maximum temperature for most downwind distances is not on the

centerline but slightly outboard. This could be caused by an instability in the flow, but we
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suggest that it is more likely that this is caused by an improperly converged solution. This
defect is not visible except at very high resolution, so its effect is not major in most cases.
Developing an improved solution requires more complete monitoring of convergence infor-
mation from WIND under a variety of solution parameters to determine which parameters
most affect the character of parameter oscillations. This task would be best performed by

someone specializing in computational fluid dynamics.

4.4 CALPUFF GPI Time Series Images

Our first result using the CALPUFF GPI client is a sequence of images in DIRSIG’s
standard “Nevada Test Site” scene. This scene is ideal for rendering a sequence of images
because there are few objects in the scene so that render time is reasonably short. The
scene was previously used by Kuo (1997) in his plume model development. We use the
same scene, but our field of view and wind direction are different.

The wind history for this sequence is our simulated version of st712c, as shown in Figure
3.18. We have simulated images every one second for one minute and thereafter every ten
seconds until five minutes total elapsed time. Images from zero, five, and ten seconds are
shown in Figures 4.20 through 4.22.

These images clearly show the movement of the plume over time. When viewed as an
animation, it can be seen that disturbances propagate outward. The plume appears a bit

like a slack rope with a transverse wave moving along it.

4.5 Hawkeye Image

As an all-up test of our plume models, we have rendered a scene of the Eastman Kodak
Hawkeye plant in Rochester, NY. The scene is centered on a factory stack that is emitting
an SOz plume. The wind sequence for this plume is the same as that used for the NTS scene

(the “standard” simulation of dataset st712c), although the sequence is rotated overall. Also
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Figure 4.20: Nevada Test Site Plume at t = 0 seconds
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Figure 4.21: Nevada Test Site Plume at t = 5 seconds
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Figure 4.22: Nevada Test Site Plume at t = 10 seconds
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Figure 4.23: Hawkeye Image at Peak SO, Emission

present in the image are two thermal vents, an Abramovich vent and a CFD-modeled vent.
Both vents and the factory plume are visible in Figure 4.23. The Abramovich vent is clearly
visible in the upper-left corner, and the CFD vent is seen as a small spot roughly on a line
connecting the source of the Abramovich vent and the factory stack. The image conversion
process has caused these images to appear more quantized in tone than the raw DIRSIG

images are.
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Figure 4.24: Radiance as a Function of Time for a Pixel Near Plume

4.5.1 Spectral Signature Variability

The wavelength used for this image, 1186 nm, is the peak emission wavelength for SOs.
As the CALPUFF plume moves, the spectral radiance from a point near the plume changes.
This effect is shown in Figure 4.24. When the plume is not over the point of interest (as
at t =0 and ¢ = 4), the SO signature is not visible. When the plume is close to the point
of interest (f = 2 and ¢t = 3), the line structure of SO, is highly visible. When the plume
is more distant (¢ = 1), the features are barely perceptible; if the sensor has poor signal to
noise, this weak signal may not be distinguishable from the background.

Although it is not visible, the SO2 plume continues off the image to the left. The plume
is also somewhat wider than it appears; although the concentration is measurable for some
lateral distance, the temperature falls off fast enough that only the core emits appreciably.
The dispersion at the stack exit has been set equal to 1.5 times the stack diameter; this

produces the best match between the stack size and visible plume diameter.
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The teardrop shape of the Abramovich plume is clearly visible. Also noticeable is the
truncation of the Abramovich plume at the edge of the building. As each ray is traced,
a simple height check is performed. If the height of the point of interest differs from the
height of the vent base by more than one meter, no heating contribution is reported. It
must be emphasized that this effect will not properly simulate impingement on a wall. If an
Abramovich plume strikes a wall, raised portion of a roof, etc., the client will report that the
portion of the wall within one meter of the vent elevation is at an elevated temperature, and
the temperature elevation will abruptly cut off at more than one meter height difference.
Furthermore, the temperature reported for the wall will be the temperature at the top of

the boundary layer, so that there would be no vertical attenuation.

4.5.2 Comparison to Experimental Data

Although there are not a great many experimental images available, some experimental
imagery of the Nevada Test Site (NTS) is available. We qualitatively compare it to the
Hawkeye scene. In both, the plume is very bright near the stack. It quickly dims and is
difficult to detect within about 10 stack diameters downwind. In both cases the plume
spreads gradually without blooming. (We note that gas plumes do not necessarily behave
similarly to the water vapor plumes we often see. The water in a plume from, e. g., a cooling
tower is near saturation and thus condenses and evaporates with changing conditions, so
that its visibility is not easily predictable.)

These images demonstrate that sensing of gas plumes must be done near the source;

temperatures and concentrations, and thus emission, drop very quickly.

4.5.3 Side-Looking views

Although the overhead view is more applicable to satellite or airborne remote sensing
of plumes, side-looking sensors are suited for ground-based monitoring of factories, experi-

mental collections, etc. The side view also demonstrates the modeling of plume rise in our
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Figure 4.27: Side-Looking Hawkeye View from Kuo (1997)

model and highlights an improvement of our model over past work. An image from Kuo
(1997) is shown in Figure 4.27.

Two similar view using our method are shown in Figures 4.28 and 4.29. Note that the
size of our plume is a closer match to the stack size than that of Figure 4.27. The older
method breaks the plume into finite regions; these regions are nested to give something of
a gradual appearance to the plume, but the changes are noticeably discrete, and the plume
ends at a finite distance downwind. In contrast, the radiance from our plume varies due to
wind speed fluctuations, which cause the spacing between puffs to vary.

Figure 4.28 was simulated using a wind speed of 3.6 m/s, while Figure 4.29 uses a
wind speed of 1.5 m/s. The effect of wind speed on the shape of the plume is readily
apparent: in slower wind, the plume rises more vertically than it does with faster wind.
Additionally, the variations in plume intensity are closer together when the wind is slower.
(The standard deviation of the wind was not modified when the mean speed was changed;

in reality, the standard deviation should be somewhat correlated with the mean speed, so

153



Figure 4.28: Side-Looking Hawkeye View Using CALPUFF GUI (3.6 m/s Wind)

that the fluctuations in slower wind would be less severe than shown here. As we have no

experimental data regarding this relationship, we are unable to model it here.)
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Figure 4.29: Side-Looking Hawkeye View Using CALPUFF GUI (1.5 m/s Wind)
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Chapter 5

Conclusion

5.1 Summary

In this dissertation, we have developed two novel techniques for simulating plume-
related phenomena. First, we have made possible the simulation of time-varying “directly
sensed,” or factory, plumes. Although previous work has explored the direct sensing of

plumes, our model features the following innovations:

o The dispersions used for these plumes reflect the actual instantaneous dispersions

more closely than previous models have.

e The time-varying nature of the model enables not only the simulation of video im-
agery but also the simulation of other types of imagery and instruments that require
relatively long imaging times (e. g., Fourier Transform Spectrometers, time-delayed

integration, slowly moving line scanners).

¢ The motion of the plumes is governed by realistic random wind fields generated with

statistics closely matched to field observations.

e The radiance emitted by plumes is calculated in a more accurate, step-wise process.
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Second, we have simulated the heating of the environment by plumes. Our models

incorporate the following:
o Warming effects are coupled with other thermal effects in a first-order manner.

e Three types of vents are available depending on user needs and available computer

resources:

— Transverse vents resemble small factory stacks and rise in a similar manner.
Although often unimportant, the model highlights parallels between directly-

sensed and indirectly-sensed plumes.
— Axial vents discharge parallel to the freestream wind. Although not as accurate

as the other models, the model runs very quickly.

— Arbitrary geometries can be simulated by computational fluid dynamics (CFD).
This option requires considerable effort and computer time, but makes possible

the incorporation of a very wide range of phenomena.
o Wind speed variations from vents are also calculated for future use.

In addition to the preceding scientific and technical advances, we have also described

the following practical and user-oriented developments:

e A key component of the new plume model is the EPA’s state-of-the-art CALPUFF
code. If enhancements are made to CALPUFF’s puff-location techniques, they will

be transparently added to our plume model.

e All plume models are implemented as clients to the new DIRSIG Generic Plume In-
terface (GPI). GPI clients execute their models independently of the main DIRSIG
program. Communication is through a structured set of messages. Users can incor-

porate their own plume models into new clients, allowing them to be easily tested.

e Multiple plumes can now appear in the same image.
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‘We have validated the plume models, when possible, against traditional plume modeling
techniques, other related work, and experimental data. The models performed within the
expected range. Long-term average results compare reasonably well to traditional methods.

Finally, we have computed and described sample images demonstrating the time-
varying nature of plumes and the ability to simultaneously model multiple plume instances

and/or phenomena.
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Chapter 6

Suggested Further Development

Although we have demonstrated the merits and advancements of our new methods,
there remain a few enhancements and modifications that would be beneficial prior to

widespread release of the finished product.

6.1 Loose Ends

6.1.1 CALPUFF Client

¢ Remove hard-coded autoregression parameters—Autoregression coefficients
and the order of the AR model are hard-coded into the client. Recommend mov-

ing these to a file that is read during gpi.init.

¢ Remove hard-coded wind upsampling—The order of upsampling to be used when
converting from the sequence generated by the autoregression to the wind sequence
(which is the same as the the order of down-sampling used during model develop-
ment to remove excessive autocorrelation from the original time sequence) and the
magnitudes of the noise added during upsampling are hard-coded into the client.

Recommend moving these to a file that is read during gpi_init.
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6.2

New Functionality Requiring Minimal Research

6.2.1 CALPUFF Client

¢ Automate execution of CALPUFF—Due to time constraints, the code to auto-

6.3

matically write the CALMET and CALPUFF input files has not been completed. The
actual printf statements for the input files have been assembled and work, but the
reading in and calculation of some variables remains, as does writing of the ancillary
meteorological data files (surface wind, winds aloft, etc.). Some thought should be
given to the translation to the CALPUFF coordinate system (which cannot handle
negative coordinates). A more complex aspect of this topic is the addition to the
CALMET and CALPUFF input files of dynamically generated elevation data from
the DIRSIG database.

Add mixing lid to concentration calculation—Currently, the plume reflects only
from the ground and not from the mixing lid. The full functionality of Equation 2.27
could be added fairly easily. It may not be too important, though, as inversions lead

to haze and poor remote sensing conditions.

New Functionality Requiring Significant Research and

Testing

Convert CALPUFF puffs to subpuff-filled spheres— Although we can modify
the matching parameter to fit the plume to the stack, this is still an ad hoc adjust-
ment. A gradual transition from a uniform distribution near the stack to a Gaussian
distribution downstream can be accomplished through the subpuff method described
in subsubsection 2.1.3. This may require significant experimentation to find the ap-
propriate number of subpuffs and to ensure that there aren’t any gaps near the stack

exit.
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e Analysis of wind data—Although the sampling rate is not quite high enough,

6.4

the new rooftop weather station may provide data useful to better parameterizing
wind characteristics. Knowledge of the variability in coefficients between and within

stability categories is important.

Axial vent characterization—This may be more a mechanical engineering topic
than an imaging science topic. It would be valuable to determine through experimen-
tation (either physical or CFD-based) how accurate the Abramovich model is when
used on non-isothermal jets. Even if it is inaccurate, this problem geometry is prob-
ably well behaved enough in parameter space to use a lookup table approach to find

solutions.

New Functionality Requiring Significant Research and
Modification of Current Method

Puff tracking—Because the current method incorporates spatial wind variation only
as an aggregate effect through averaging, it is not well-suited to simulating discontinu-
ities in plumes, wind shear, and other localized effects. An approach that individually
emits and propagates puffs through time would be capable of simulating these discon-
tinuities. The actual movement of puffs is simple, but the method requires a realistic
wind field varying in space and time to produce plumes that are more realistic than
those produced by the current method. Implementing this approach will require sig-
nificant research into wind statistics and modeling. This area is discussed in more

detail in Appendix G.
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Appendix A

Rural Dispersion Coefficients

Taken from EPA, 1995b

oy = 465.11628(z) tan(#)
6 = 0.017453293[c — dIn(z)]

Pasquill

Stability

Category c d
A 24.1670 | 2.5334
B 18.3330 | 1.8096
C 12.5000 | 1.0857
D 8.3330 | 0.72382
E 6.2500 | 0.54287
F 4.1667 | 0.36191
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Pasquill
Stability
Category z (km) a b
A* < 0.10 | 122.800 | 0.94470
0.10 - 0.15| 168.080 | 1.05420
0.16 - 0.20 { 170.220 | 1.09320
0.21 - 0.25 | 179.520 | 1.09320
0.26 - 0.30 | 217.410 | 1.26440
0.31 - 0.40 | 268.890 | 1.40940
0.41 - 0.50 | 346.750 | 1.72830
0.51 - 3.11 | 453.850 | 2.11660
> 3.11
B* < 0.20| 90.673 | 0.93198
0.21 - 0.40 | 98.483 | 0.98332
> 0.40 | 109.300 | 1.09710
c* All| 61.141 | 0.91465
D < 0.30 | 34.459 | 0.86974
0.31 - 1.00| 32.093 | 0.81066
1.01 - 3.00 | 32.093 | 0.64403
3.01 - 10.00 | 33.504 | 0.60486
10.01 - 30.00 | 36.650 [ 0.56589
> 30.00 | 44.063 | 0.51179
E < 0.10| 24.260 | 0.83660
0.10 - 0.30 | 23.331 | 0.81956
0.31 - 1.00| 21.628 | 0.75660
1.01 - 3.00| 32.093 | 0.64403
3.01 - 10.00 | 33.504 | 0.60486
10.03 - 30.00 | 36.650 | 0.56589
> 30.0| 44.053 | 0.51179
F < 0.20| 15.209 | 0.81558
0.21 - 0.70 | 14.457 | 0.78407
0.71 - 1.00| 13.953 | 0.68465
1.01 - 2.00 | 13.9563 | 0.68465
2.01 - 3.00( 14,823 | 0.54503
3.01 - 7.00| 16.187 | 0.46490
7.01 - 15.00 | 17.836 | 0.41507
15.01 - 30.00 | 22.651 | 0.32681
30.01 - 60.00 | 27.074 | 0.27436
> 60.00| 34.219 | 0.21716

* If the calculated value of o, exceeds 5000 m, o, is set to 5000 m.

**ag, is equal to 5000 m.
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Appendix B

Urban Dispersion Coefficients

Taken from EPA, 1995b

Pasquill

Stability

Category | oy (m) oz (m)
A 0.32(x)(1.0 + 0.0004x)~ Y2 | 0.24(z)(1.0 4+ 0.001x)'/2
B 0.32(z)(1.0 4+ 0.0004z)~'/2 | 0.24(x)(1.0 +0.001z)1/2
C 0.22(z)(1.0 + 0.00042)~ /2 | 0.20(x)
D 0.16(z) (1.0 4 0.0004z) /2 | 0.14(x)(1.0 + 0.0003z) ~1/2
E 0.11(z)(1.0 + 0.0004z) = /2 | 0.08()(1.0 + 0.0015z)~1/2
F 0.11(z)(1.0 4 0.0004z) /2 | 0.08(x)(1.0 + 0.0015z) ~1/2

x is in kilometers
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Appendix C

Listing of CALPUFF GPI

Parameters and Inputs

C.1 Breakdown of Parameters

The parameters and inputs in the CALPUFF GPI code can be broken down into a few

basic groups.
1. Stack geometry and effluent inputs
2. Release information
3. CALMET and CALPUFF inputs
4. AR Model parameters
5. MIND algorithm parameters

6. Ray tracing parameters
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C.2 Stack Geometry and Effluent Inputs

The parameters below are used to define the stack geometry and effluent types in the

DIRSIG .release file. The typical values are rough order of magnitude dimensions.

Number | Units Release file tag | calpuff_gpi variable Typ val

1.1 STACK{LOCATION} m release->stack_location | As req
(Note 1)

1.2 STACK{HEIGHT} m release->stack height 15

1.3 STACK{DIAMETER} m release->stack-diameter | 2

1.4 EFLUENTS{COMPOUND{NAME} } N/A N/A As teq

14 EFLUENTS{COMPOUND{WEIGHT}} Nondim release->gas weights[] | Asreq

Note 1: The stack location does not have to be identical to the stack location input
into CALPUFF (parameter 3.9). The location in the release file may have negative co-
ordinate values (i. e., the origin does not have to be at the corner of the scene), whereas
the CALPUFF input requires positive values. The axes must be aligned, however. The

necessary coordinate transformation is performed by the initiation portion of the GPI.

C.3 Release Information

The release parameters are also contained in the DIRSIG .release file. They are all
contained in the RELEASE{} tag at the end of the file. The parameters for each time are
specified on a single line in the order shown in the table. All variables listed are actually
arrays with elements for each of the time listed in the file. The reasonable values are roughly

equivalent to the st712c data set.
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Number Parameter Units | calpuff_gpi variable Reasonable value
2.1 Time TBD | release->time Note 1

2.2 Exit velocity m/s | release->exit_velocity 12.0

2.3 Exit temperature K | release->exit_temperature | 350

2.4 Air temperature K | release->air_temperature | 300

2.5 Wind velocity m/s | release->wind_velocity 3.6 (Note 2)

2.6 Wind direction deg | release->wind direction 0

2.7 Atmospheric stability | N/A | Not currently used

2.8 Release rates g/s | release->gas_rates[] 20

Note 1: Interpolation of release values requires parameter entries before and after the
time of interest. Therefore, it is recommended that the user always enter release parameters
for a time of 0.0 and a time after the last time of interest. There parameters can be identical

if the release properties are constant.

Note 2: For consistent results, the user must ensure that the wind velocity specified
in the release file is the same as that used in the CALPUFF input file. Furthermore, the
CALPUFF GPI client does not use time-varying wind speeds; only the average speed is

calculated. Therefore, for clarity, the user should specify the same wind speed for all time

inputs.

C.4 CALMET and CALPUFF Inputs

The following inputs are in the CALMET and/or CALPUFF .cfg files. Other inputs
are required to specify the number of meteorological stations used and the files containing
meteorological data; such auxiliary inputs are not listed here. Furthermore, there are many
relationships between parameters that must be checked for consistency. The “M” and “P”

columns indicate whether a parameter is used in CALMET and CALPUFF, respectively.
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Number Parameter CAL* tag | Units M? | P? | Rec value
3.1 Number of grid points [ NX & NY | Nondim X | X | Notel
3.2 Grid scale DGRIDKM | m X | X |001
33 Origin of coord sys | XORIGKM & | km X | X | Note 2
YORIGKM
3.4 Debug flag LDEBUG | N/A X |T
3.5 # of puffs to track NPFDEB Nondim X | 1 Note 3
3.6 Max travel dist XSAMLEN | Grid units X | 0.01 Note 4
3.7 Max # of puffs MXNEW Nondim X 120000
to release
3.8 Max # of MXSAM Nondim X | 1000 Note 5
sampling steps
3.9 Source parameters SRCNAM Various X | Note 6

Note 1: NX or NY, the number of grid points, multiplied by DGRIDKM, the size of each
grid square, must be larger than the region to be rendered in DIRSIG.

Note 2: The origin for the coordinate system is the location of the southwest corner of
the grid in the Universal Transverse Mercator (UTM) coordinate system. The origin is not
currently used, but the user must ensure that the location of the origin is consistent with
the locations of any meteorological stations provided.

Note 3: Although we are interested in the locations of many puffs at an instant, we
ask CALPUFF to write to the debug file the trajectory of only one puff through time.

Note 4: XSAMLEN is the distance that a puff will be allowed to move during a sampling
step. A puff position is written to the CALPUFF debug file each sampling step. By setting
it small (0.01 m in this case), we get a very high resolution plume track from CALPUFF.

Note 5: MXSAM is the maximum number of of sampling steps that will be used; it is
intended to reduce computational time if XSAMLEN is very small. MXSAM should be set large
so that this capping does not occur.

Note 6: Stack parameters are listed on a single line. The only ones important are
XUTM and YUTM (first and second fields in the line), which are the location of the stack in
kilometers referenced to the UTM grid. Care must be taken to ensure that the location
lies within the computational grid. The CALPUFF location does not have to be identical

to that in the release file (parameter 1.1). The relative spacing between the stack and any
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terrain or other features must be preserved.

C.5 AR Model Parameters

Many parameters in the CALPUFF GPI client deal with the autoregressive wind model.

Some of the parameters are defined as preprocessor macros (#define), while others as

variables. The names of the preprocessor macros are capitalized. The default parameters

are for the st712c dataset.

Number Parameter Units | Description Default value
4.1 AR_DOWNSAMPLE Nondim | Factor by which wind 10
data are downsampled
prior to AR modeling
4.2 AR_MODEL_ORDER Nondim | Order of AR model 4
4.3 max time s Maximum elapsed time for | 200
which wind is generated
4.4 target_sigmatheta deg Desired standard deviation | 11.37
for wind direction
4.5 sigmau m/s Desired standard deviation | 0.812
for wind speed
4.6 ubar m/s Desired mean wind speed 3.6
4.7 Mean wind direction deg First elements of wind 353.068
(no var) array initialized to mean
4.8 AR coefficients Nondim | AR coefficients hard coded | As per Eq 3.8
4.9 sigma noise_direction deg Noise added to wind 0.5
direction during upsampling
4.10 sigma noise_speed deg Noise added to wind 0.5
speed during upsampling

C.6 MIND Algorithm Parameters

After the wind sequence is generated the MIND algorithm is run. The following pa-

rameters are associated with this portion of the client.

173




Number | Parameter | Units | Description Default value
51 minr m Minimum distance at which 10
instantaneous diffusion
is calculated (Note 1)
5.2 numr Nondim | Number of distances at which | 500
instantaneous diffusion
is calculated

5.3 deltar m Interval at which 1.0
instantaneous diffusion
is calculated (Note 2)

Note 1: minr must be at least two seconds downwind of the source as measured using
the mean wind speed.
Note 2: The furthest distance at which the diffusion is calculated, maxr = minr 4

(numr — 1)deltar, must be farther from the source than the most distant CALPUFF debug
puff.

C.7 Ray Tracing Parameters

Only one user parameters is actually used in ray tracing. It is the matching criterion
by which the plume dispersion is matched to the stack size. The stack diameter is divided

by the constant, and the result is added to all the dispersions calculated by MIND.

Number Parameter Units | Description Default value
6.1 Minimum dispersion | m Added to dispersions | 1.0
(no var) calculated by MIND
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Appendix D

Calculation of uy,

The theory outlined in this section comes from (Abramovich, 1963); it is derived in
Chapter 11, with Section 11.3 devoted to the main region for jets with ug > ug. The

equation numbers in this section correspond to those in Abramovich. For convenience,

Figure 2 is reproduced here.
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Pertinent variables are:

Quantity Definition Explanation

b
bo
bn

br

SEfEsEsl

%[

Jet thickness from top of boundary layer to top of jet
Initial jet height (stack height)

Jet thickness at g

Nondimensionalized jet thickness at zyy

Local velocity ratio

Initial velocity ratio (freestream to jet)

Air velocity at an arbitrary point

Air velocity just outside of boundary layer
Freestream wind velocity

Vent gas velocity

Nondimensionalized velocity

Downwind distance

Beginning of main region; point at which u,, begins to decrease
Nondimensionalized beginning of main region
Boundary layer thickness

Boundary layer thickness at zp

Nondimensionalized boundary layer thickness at oy
Inverse of velocity ratio (for convenience)

Inverse of initial velocity ratio (jet to freestream)
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First, the parameters of the problem are established: by, ug, ug. From the velocities,
mg, and xg are found trivially.

Next, the properties at the beginning of the main section (zy) are found.

. bn 1-my
=— = 11.43
bn by  0.316 (1 —myg) (1 + 0.425mg) + 0.0875 ( )
= on 01 -
=—— =} 11.42
JH b() 1- my 1 ( )
gp=M o utin-l (11.45)
bo 0.227722 (0.584 — 0.134my)
From these, by,dr1, and zpp can be found.
Next, we evaluate a function of xg that arises from an integration of db/b.
_ xo—1
F {x0) = (Between 11.33 and 11.34)

(xo + 0.4085) (xo — 0.8475)'8
Although we will not use it in our analysis, b for a given location may be found, if desired,
from 3% = %&% Note, when consulting Abramovich, that the exact equation given just
above is not used subsequently. Instead, an approximation Fj (x) ~ Fj(x) that involves
only integer powers is used; the approximation is Equation 11.34.
After determining the location and characteristics of the beginning of the main section,
the properties at any downwind location can be determined. Our goal is to find u,, vs. z.

First, a value for m (which must be greater than mg) and thus for u,,. Then, z can be

found from
bt . .
T =zn+ —OTQQT %5" ) [F3(x) — F3 (x0)) (11.38 (trivially modified))
where
Fy() =61l [ —X=1_} L oga5m (—X=L )4 (11.39)
3= x—08475 ) T X + 0.4085 '
10.02 1.47 0.374

X — 08475 | (5 —0.8475)2 " x + 0.4085
By iterating over a series of values for m and solving for z for each, we derive the relationship

between z and u,. An example for mg = 0.2 and by = 1.0 is shown in Figure D. This
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Figure D.1: m vs. z for mg = 0.2

is the same case as the bottom solid curve in Figure 11.6 of Abramovich. When the F;
approximation is used, the curves are identical; they are slightly different when the exact

Fy is used as in Figure D.
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Appendix E

Procedure for Calculating AR
Coefficients in R

Although Minitab is probably easier for overall analysis of time series and graphing
of the results, analysis in R (R Development Core Team, 2001) is quicker and easier to
automate for wind sequences that are well-modeled by autoregressive models (e.g., st712c

and st712e).

E.1 R Packages

As a general-purpose data processing language, R has no intrinsic time series analysis
routines. The routines we have used are contained in two packages. The first, ts, is
distributed with R and is maintained by the core R team. It includes routines used to
create time series objects for analysis by other functions and several AR analysis routines.
The second, tseries, must be downloaded separately. It includes alternate AR routines.

Library packages must be loaded before use. This is done using the library command:

library(ts)

library(tseries)
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E.2 Reading Time Series

Data must be read into a time series object before it can be analyzed in R. The ts
library includes a function, read.ts, for this purpose. The series to be read should be put
in a plain text file, with the data occupying a single column. A sample use of the function
is:

dirts<-read.ts("10sec712cdir.puv" ,header=FALSE)

The “header=FALSE” argument suppresses interpretation of the first row as variable names.
(We have read them from separate one-column files, but speed and direction could be read

from a single file with headings.)

E.3 Calculation of ACF and PACF

As mentioned in Subsection 2.3.2, the behavior of the Autocorrelation Function and
Partial Autocorrelation Function indicate the type of ARIMA model appropriate for a time
series. The acf and pact functions plot the ACF and PACF along with significance bounds:

acf(dirts)

pacf (dirts)

E.4 AR Modeling

Several procedures are available for conducting the actual autoregressive analysis. Var-
ious algorithms are available within these procedures to calculate the coefficients. We have

found the ar and arma routines most useful.
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E.4.1 ar Routine

The ar routine is the more flexible of the two. It can use the Yule-Walker (the de-
fault), ordinary least squares, and maximum likelihood methods. With the ordinary least
squares method the data can be “demeaned” (the mean subtracted from each point prior
to analysis) and an intercept term can be fitted. The ar procedure also uses the Akaike
Information Criterion to automatically select the order of the model.

ar.ols(dirts)

ar.ols(dirts,intercept=TRUE)

E.4.2 arma Routine

Although the ar routine is more flexible, it does not report error bounds or significance
levels for the model coefficients. The arma routine can do this. The routine uses the
maximum likelihood method. The order of the model must be specified as a two-dimensional
vector containing the order of the AR model and the order of the MA model.

arma(dirts,order=c(4,0))

summary (arma(dirts,order=c(4,0)))

The “summary” causes the significance of the coefficients to be reported.

E.4.3 Example Session

An example session analyzing the data from the st712c dataset is shown here.

> library(ts)
> library(tseries)

‘tseries’ version: 0.7-0
‘tseries’ is a package for time series analysis with emphasize

on non-linear modelling.
See ‘library (help=tseries)’ for details.
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> dirts<-read.ts("10sec712cdir.puv" ,header=FALSE)
> pacf(dirts)

The PACF is shown in Figure E.1.
> ar.ols(dirts,demean=FALSE, intercept=TRUE)
Call: ar.ols(x = dirts, demean = FALSE, intercept = TRUE)
Coefficients:
i 2 3 4
0.4554 0.1046 0.1056 0.1496

Intercept: 65.18 (17.49)

Order selected 4 sigma”2 estimated as 65.82
> summary (arma(dirts,order=c(4,0)))

Call: arma(x = dirts, order = c(4, 0))
Model: ARMA(4,0)
Residuals:

Min 1Q Median 3Q Max
-26.0807 -5.5484 0.2663 4.9188 25.1874

Coefficient (s):

Estimate Std. Error t value Pr(|tl)
ari 0.45417 0.05716 7.945 2e-15 *okk
ar2 0.10440 0.06264 1.667 0.095585 .
ar3 0.10109 0.06260 1.6156 0.106355
ar4 0.14992 0.05717 2.622 0.008730 *x*
intercept 67.15283 17.37581 3.865 0.000111 **x*

Signif. codes: 0 “***x’> 0.001 “¥*x’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ ’ 1

Fit: sigma™2 estimated as 66.05, Conditional Sum-of-Squares =
19483.37, AIC = 2118.46

Although not exactly the same, the significant coefficients from these two procedures

are very close to the results from Minitab in subsubsection 3.2.3.
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Figure E.1: Plot of PACF for Dataset st712¢ from R
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Appendix F

Procedure for Using WIND CFD
Results

This appendix outlines the procedure we have developed and implemented for incor-
porating results from the WIND CFD code into DIRSIG imagery. The procedure will be
different if another CFD code is used, although the basic problem flow will be similar, and
a very similar GPI client can be used if results can be exported as a simple list of the values

of variables at each grid point.

F.1 Required Software

F.1.1 WIND CFD Code

The WIND CFD code is a product of the NPARC Alliance, an organization formed
by the teaming of NASA’s Glenn Research Center and the U.S. Air Force’s Arnold Engi-
neering and Development Center. The organization is “dedicated to the establishment of
a national, applications oriented computational fluid dynamics (CFD) capability, centered
on the NPARC computer program.” The original NPARC Alliance computer code is one

of the three major components of the current WIND code. The homepage for the Alliance
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is located at http://www.arnold.af.mil/nparc.

The WIND code is available to all U.S.-owned companies, universities, and government
agencies; for non-governmental agencies, an export license is required. More information
can be found at the NPARC home page.

The software is available for a wide variety of computer and processor combinations.
Binary executable versions are available for most combinations, and the source code is
also available. We have experience running the pre-compiled binaries under Linux on In-
tel processors, and have successfully built binaries for the Sun (we were unable to run the
pre-compiled binaries due to an apparently hard-coded run-time library dependence). Com-
piling and installing the software is beyond the scope of this document; we will hereafter
assume that the user has successfully run WIND and has worked through the case4 tuto-
rial described in the User’s Manual (NPARC Alliance, 2001), which is, as of August, 2001,

available at http://www.grc.nasa.gov/www/winddocs/user/index.html.

F.1.2 PLOT3D Visualization Code

PLOT3D is a CFD visualization and plotting package developed by the NASA Langley
Research Center. It is not strictly required for our method, but highly recommended, as it
is the most straightforward way to display WIND’s input and output to ensure correctness
and reasonableness. PLOT3D can be obtained from

http://www.nas.nasa.gov/cgi-bin/software/start. Execution of a license agreement

is required.
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F.2 Method for Using WIND Results in DIRSIG

The steps involved in creating and using WIND CFD data are:

Step 1: Create grid file

Step 2: Create data file

Step 3: Execute WIND code

Step 4: Export results

Step 5: Modify cfd_gpi

First, WIND’s input files must be created. Two files are required. The grid (. cgd) file

specifies the grid geometry and boundary condition types, and the data (.dat) file defines

the specifics of the flow conditions and various options.

F.2.1 Create grid file

WIND requires grid data in the Boeing Common Grid Format. Various tools are
provided to assist the user in converting data to and from this format.

Although an ASCII version of a Common File is available, the files are quite long and
not particularly user-readable. We have chosen, therefore, to use a modified version of the
procedure used in the WIND User’s Guide (NPARC Alliance, 2001) in the case4 example.
This method writes the data into the .xyz format used by PLOT3D, which is then converted
to a .cgd file using the cfcnvt WIND utility.

We were unable to successfully read formatted binary files into cfcnvt, and thus use
the unformatted binary format, similar to the case/ example. We first write a C program
that defines the grid geometry and outputs (x,y,z) coordinate locations as ASCII text. This
text can easily be read by humans for error checking and can be exported to other platforms.
The basic C program for our baseline roof vent geometry is 3dventbig.mesh.c.

As the .xyz file is read by FORTRAN READ statements in PLOT3D, we write the

actual .xyz file using identically-formatted FORTRAN WRITE statements to ensure that
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the file is written correctly. The programs trans.f (for two-dimensional geometries) and
trans3d.f (for three-dimensional geometries) take input from the C programs and write
the .xyz file using the WRITE statements.

Using our method, the user modifies an appropriate C file to revise the geometry and
compiles it. The .xyz file is then generated by piping the output of the C program through
the FORTRAN-based translator; an example command line would be 3dventbig.exe |
trans3d.exe. The output from the translator, trans.xyz, can then be renamed.

Once the .xyz file has been written, it can be translated to a .cgd file using option 11
in cfenvt, similar to the procedure used in the case example.

The .cgd file as output by the translator contains only the geometry information;
the user must subsequently define boundary condition information using the WIND utility
gman. The procedure is again similar to that for the case4 example. We have found it
convenient to generate a command script file for gman which can then be used to quickly
redefine all boundary conditions. Example scripts for many of our cases are available in
their directories, titled bc.jou. The major differences between the various scripts are in
the locations of the arbitrary inflow regions; most of the other boundary conditions do not
change.

(We have found, for the Sun platform, what may be a bug in gman. When coupling
the zones together on a fresh .cgd file (using the command automatic couple face zomne
all), gman crashes with a segmentation fault. The command and all subsequent commands

seem to execute normally when gman is run again for the same file.)

F.2.2 Create Data File

The data file contains flow specifics for a given case; for example, it contains the
freestream flow properties, which are applied to all boundaries specified in gman as being of
freestream type, and the properties for arbitrary inflow regions. It also contains options for

turbulence models and various solver options. Details of the various commands are found
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in the WIND User’s Guide (NPARC Alliance, 2001). In many cases, our sample .dat files
may be usable as is, or perhaps with modifications to the arbitrary inflow properties.

Some discussion of the appropriate boundary condition for the roof plane is necessary.
For the most accurate results, we could account for the boundary layer buildup on the
roof. This would be done by specifying the boundary as a “viscous wall” in WIND or by
manually curving the bottom plane of the grid according to the boundary layer thickness
and specifying the boundary as an “inviscid wall.” Qur sample analysis does neither; the
simple heat transfer relations already present in DIRSIG do not account for boundary layer
growth. For simplicity and CFD runtime savings, we chose to model the roof plane as an
inviscid wall. Although unrealistic, this choice matches reality as DIRSIG knows it, as there
is no boundary layer buildup on the wall.

The .cgd and dat files are the only required files. An .mpc file is also used if the
solution is to be run in parallel on multiple machines. We have successfully run WIND in

parallel using the ssh (Secure Shell) method for communication between machines.

F.2.3 Execute WIND Code

After the input is defined, the WIND code is run in a manner similar to that for the
case4 example. If the CFD grid is large, the solution may take a considerable length of
time; depending on the load from other users, we have found that the 3dventbig problem
(the geometry used for our roof vents) running in parallel on six machines takes between

twelve and twenty-four hours to complete, depending on the load from other users.

F.2.4 Export Results

Exporting WIND results is simple using the WIND utility cfpost. In a manner similar
to that in the case/ example, we specify that output is to be for all zones, but only for
the j = 1 plane, which forms the “roof” (the bottom of the computational domain). We

then output the velocity and temperature results using the “list” command in cfpost. Our
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example scripts export the data in the normal format, which is more easily human-readable,
and the raw format, which is a sequential listing only of temperatures. The raw format is
used directly by the DIRSIG GPI, but it is recommended that the normal format be kept
with the raw format as a guide to grid point locations if necessary.

The results from the .cfl results file can also be converted into a PLOT3D .q file
in a manner similar to the case4 example so that the data can be viewed graphically in

PLOT3D for evaluation.

F.2.5 Modify cfd_gpi

The final step in the process is to modify the gpi client, cfd gpi, to read the data
file. This is necessary because, at present, the grid geometry is hard-coded. The sizes
(dimensions and locations) of the zones are calculated by the gpi client. The geometry
can be easily calculated if the program lines used to generate the mesh in the appropriate
portions of the .mesh. ¢ file are copied to cfd_gpi.c. The .raw.T and .raw.V (temperature
and velocity) files must also be moved to the directory from which DIRSIG will be run.

Once the code has been copied, DIRSIG can be run invoking the cfd_gpi client.
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Appendix G

Puff Tracking

Although our method is an improvement over previous methods in that it can simulate
some dynamic plume effects, it is not capable of modeling all phenomena. In particular,
it will not allow the plume to become spatially discontinuous. Furthermore, the method
is not easily adaptable to incorporating such effects. Fully modeling these phenomena, we
suggest, requires a rigorous tracking of all puffs through a spatio-temporally varying wind
field. Such an approach is largely incompatible with CALPUFF, incompatible with the
plume centerline location of the MIND algorithm (MIND instantaneous diffusions are still
usable), and requires a much more complex time series analysis of the wind. Although
implementing any of these techniques is beyond the scope of our work, we describe in
general an approach to achieving a puff tracking modeling technique in order to guide

future research.

G.1 Limitations of MIND Method

As discussed in subsubsection 2.2.5, the MIND algorithm uses averaging to approximate
the aggregate effect of wind fluctuations on puffs as they travel downstream. This method
is computationally efficient and is adequate in cases where the plume moves smoothly, i. e.,

when each puff approximately follows the previous one. When this is the case, the fact that
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our method actually rotates the CALPUFF debug puffs from side to side is not apparent.
This assumption of smoothness is not valid where wind shear or turbulence cause the plume
to become discontinuous transversely to the mean wind direction, and our method does not
propagate such discontinuities downstream. As mass rates are propagated downstream (the
mass of each debug puff is set at each time step according to the release rate in effect at
the appropriate time of release), discontinuities along the wind direction can be simulated
on an ad hoc basis by varying the gas release rate. A method similar to the propagation of
mass downstream could be used to propagate a fixed lateral or vertical break downstream
or to introduce one in a manual fashion into a single image, but this improvised method

would not automatically simulate the variable character that such breaks should exhibit.

G.2 Overview of Puff Tracking Approach

The concept of a puff tracking model is simple to understand: puffs are emitted at
a certain rate (sufficient to prevent gaps in a constant wind case) from a source. Based
on a simulated wind velocity at the source, each puff is moved in the wind direction for a
short length of time. At each time step a new puff is emitted and the previous puffs are
again moved in the direction of the wind at their most recent location. This process is
conceptually shown in Figure G.1. In the figure, puffs are emitted every At seconds, and
the wind speed experienced at time iAt by puff j is denoted by #; ;. Once the puff field is

established, raytracing proceeds in exactly the manner used for our method.

G.3 Wind Modeling Requirements for Puff Tracking

The example shown in Figure G.1 assumes that the wind varies with both space and

time. This is essential for puff tracking.

If the wind field varies only temporally (e. g., if an experimental wind sequence is used

across the entire problem domain), the relative spacing between puffs does not change with
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Location of puff at beginning of time step

Location of puff at end of time step

Wind experienced during time step i by puffj

t=0-> t=At t=At—> t=2At t=2At— t=3At

Figure G.1: Illustration of Puff Tracking

time; this effect, shown in Figure G.2, produces a continuous plume with jagged structure.
This jaggedness will be reduced somewhat with distance as the size of the puffs grows, but
the spacing between puffs will not change. This method does have the small advantage that
it will capture variations in wind speed at any frequency (which is not true of the MIND
model since major variations occur only with every second of downwind travel), but this
advantage seems to be small compared to the problem of static puff spacing.
Alternatively, a wind field that varies only spatially would be incapable of simulating
a time series; the plume would appear the same at all times. Thus, both spatial and
temporal variability are required to model plumes adequately. The MIND method provides
this by using variable smoothing times based on distance on a single wind sequence, thus
introducing spatial variability but in a way that induces smoothness. (It would be possible
to use a MIND-derived wind sequence with puff tracking, but the resulting plume would be

smooth and generally similar in character to those from our normal method.)

To see a clear benefit from a puff tracking approach, a realistically-varying wind field
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Location of puff emitted during current time step at end of step

Location of puff emitted during previous time step at end of step

O Location of puff emitted during previous time step at beginning of current step

Figure G.2: Illustration of Puff Tracking with Spatially-Constant Wind

is needed. Unlike with MIND-smoothed wind, the variability in this wind field should not
be a function of distance from the source; statistics such as the standard deviation, while
varying locally, should probably not have any systematic variations across the field.

Once this wind field is available, puff tracking becomes a (large) matter of bookkeeping.
As each puff is emitted, the wind it experiences in a time step is retrieved and the puff is
moved a small distance accordingly. This process is repeated for “past” time steps until
enough puffs have been emitted to form the plume at £ = 0 and then continued as needed

to simulate the plume at future times. This tracking is likely to be quite time consuming,.

G.4 Eulerian and Lagrangian Wind Formulations

There are two fundamental ways to examine and model the wind field. The Eulerian
approach measures the wind at fixed locations, as with receptor-based measurements. The

Lagrangian formulation, on the other hand, measures properties from the perspective of a
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particle moving in the flow; it is experimentally very difficult to measure as the point of
measurement continually varies. In general, the autocorrelation and other wind statistics
will differ depending on which perspective is used, with theoretical relationships between

the two (Hanna, 1979; Blackadar, 1997).

If the wind is modeled only in the Eulerian approach, three-dimensional data must
be simulated (two dimensions of space plus time) for both the speed and direction. This
data must either be pre-generated or generatable on the fly. However, the overall correlation
characteristics in each of the spatial and temporal dimensions will likely be the same through

the entire wind cube.

Modeling the wind in a Lagrangian fashion reduces the dimensionality of the data to
two for speed and two for direction: one dimension specifies the time of release of the
puff (or some other puff index reference) and the other dimension specifies time. Thus,
fewer data are required. The spatial dimensions are implicit in the formulation; the puff
location can be calculated as the vector sum of all previous motions, and using Lagrangian
statistics ensures that the next motion is appropriate for wherever the particle ends up.
These motions are correlated with recent motions of the puff and with motions of puffs

emitted at nearly the same time.

It seems likely that this reduction of dimensionality comes with another price: the
autocorrelation functions in the two dimensions may not be independent of each other. In
particular, we suggest that the motions of puffs emitted around the same time will become
less correlated with travel time. While close to the stack the puffs will tend to move through
the same turbulence cells. As time (and distance) progress, small variations between paths
that puffs emitted at nearly the same time take will tend to move some puffs into different
cells, and they will thus begin to experience different motions, reducing the correlation
between subsequent predicted motions. Correctly modeling this effect may be difficult as
the necessary models are nonlinear (though it may be possible to generate the data in

piecewise-linear blocks with discrete changes in ARIMA parameters between blocks).
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G.5 Summary and Recommendations

If a satisfactory method for modeling multi-dimensional wind can be found, using it
to generate plumes via puff tracking should lead to more realistic plumes. In the same way
that our one dimensional AR process is capable of producing sudden random shifts in the
wind direction, the multi-dimensional model should produce a wind field containing both
temporal and spatial (shear) effects. As mentioned earlier, this process is likely to be quite

resource intensive.

The first step in implementing a puff tracking approach is a search for any other work
using ARIMA models to generate multi-dimensional wind; without a proper wind field, puff-
tracked plumes will either be smooth, as our current plumes are, or suffer from immediately
apparent artifacts. If the foundation for wind field generation does not exist, creating one

is probably a doctoral-level task in statistics, meteorology, or mechanical engineering.

As with our one-dimensional data, the model parameters must be determined through
analysis of experimental data. Methods for estimating Lagrangian statistics based on Eu-
lerian measurements are available, allowing wind to be measured at fixed locations but

applied to moving puffs.

The experimental data should be multi-dimensional to fully determine the correlations
in each dimension. Although it might be possible to assume that nearby positions experience
wind with identical statistics to a measured position, this is equivalent to assuming that
turbulence is homogeneous in a region, which would fail to capture shear characteristics.
Thus, wind data from an array of receptors is likely necessary. This data would be difficult
to capture, requiring an investment in equipment and a methodical and likely lengthy
collection campaign to obtain enough data to enable reasonable confidence bounds on the

parameters.

In summary, then, properly implementing a tracking approach requires in-depth knowl-

edge of wind processes in order to produce a result that is clearly superior to our method.
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Although this would be a significant achievement, the level of effort required may make it
unattractive. Better value may be obtained in the end from tweaking our current model to
manually add discontinuities and to propagate these discontinuities in the same way that
puff mass is propagated. With some sort of “mutation” of the discontinuities with time,

the result may be adequate for many purposes.
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